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Abstract

We propose a neural circuit model forming a semantic network with exceptions using
the spike-timing-dependent plasticity (STDP) of inhibitory synapses. To evaluate
the proposed model, we conducted nine types of computer simulation by combining
the three STDP rules for inhibitory synapses and the three spike pairing rules. The
simulation results obtained with the STDP rule for inhibitory synapses by Haas et
al. [J. Neurophysiol. 96 (2006) 3305] are successful, whereas the other results are
unsuccessful. The results and examinations suggested that the inhibitory connec-
tion from the concept linked with an exceptional feature to the general feature is
necessary for forming a semantic network with an exception.
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1 Introduction

The role of memory is important for human high-order functions such as
thought, motion, and recognition; high-order functions cannot be performed
in the absence of memory. There are two major forms of memory, episodic
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memory and semantic memory, which are both declarative (Tulving, 1972;
Squire, 1987). Episodic memory is supposed to deal with individual episodes
definable with respect to time and place while semantic memory contains im-
personal facts undefinable in terms of time and place. The semantic network
model (Collins and Quillian, 1969; Collins and Loftus, 1975) is proposed as
a structure model of semantic memory. A semantic network is an oriented
diagram in which nodes represent actual objects and arcs represent seman-
tic relationships between these objects. However, the semantic network model
does not have a process for constructing a semantic network.

Kobayashi and Murakoshi (2007) have proposed a neural circuit model forming
a semantic network in the neocortex from direct input and episodic memory in
the hippocampus using spike-timing-dependent plasticity (STDP) (Froemke
and Dan, 2002), based on the hippocampus neural circuit model forming
episodic memory (Ito et al., 2003). STDP is a minute time resolution version of
the well-known Hebb learning rule. In the model (Kobayashi and Murakoshi,
2007), for example, after inputs such as “a canary is a bird” and “a bird can
fly” are memorized, the output words “canary”, “bird”, and “can fly” are suc-
cessively recalled by presenting the word “canary”. Such results show that the
model is able to form a semantic network.

However, the semantic network formed by the model proposed by Kobayashi
and Murakoshi (2007) cannot represent an exception. An example of an ex-
ception is described as follows. In the case that “a canary is a bird”, “a bird
can fly”, “an ostrich is a bird”, and “an ostrich cannot fly” are presented,
the exception is that “the ostrich is a bird but cannot fly” in contrast to the
general fact that “birds can generally fly”. We examine whether the model
(Kobayashi and Murakoshi, 2007) can learn the relations with an exception:
“ ‘canary’ and ‘bird’ ”, “ ‘ostrich’ and ‘bird’ ”, “ ‘bird’ and ‘can fly’ ”, and
“ ‘ostrich’ and ‘cannot fly’ ”. As a result, “can fly” is additionally recalled
with “cannot fly” for the input “ostrich”, whereas “can fly” is only recalled
for the input “canary”. That is, the memory retrieval process of a seman-
tic network with an exception is not perfectly accomplished using the model
(Kobayashi and Murakoshi, 2007). For successful recall, any suppression of the
output “can fly” for the input “ostrich” is necessary. In the model proposed by
Kobayashi and Murakoshi (2007), only excitatory connections are used. Thus,
we surmise that inhibitory connections are important for forming a semantic
network with an exception in a neural circuit.

In this paper, we propose a neural circuit model forming a semantic net-
work with exceptions using the spike-timing-dependent plasticity (STDP) of
inhibitory synapses. To evaluate the proposed model, we conduct computer
simulations. Because some types of STDP of inhibitory synapses are physio-
logically observed, we simulate each type of STDP. Additionally, since some
rules for determining spike pairs are assumed, we examine each rule. It is
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expected that the results of computer simulations will clarify the role of in-
hibitory connections in memory with an exception.

The remainder of this paper is organized as follows. In Section 2, we introduce
STDP and topics related to STDP. Section 3 proposes a neural circuit model
forming a semantic network with an exception. Section 4 shows the results of
our computer simulation, and discusses how to form a semantic network using
the STDP of inhibitory synapses. Section 5 presents our conclusions.

2 Spike-timing-dependent plasticity

In this section, we introduce spike-timing-dependent plasticity (STDP), which
is used in the proposed model shown in Sec. 3. STDP is a special Hebbian form
of synaptic plasticity where the relative timing of pre- and postsynaptic spikes
determines the change in synaptic weight. STDP is considered as a neural basis
of memory storage. There are two types of STDP: STDPs of excitatory and
inhibitory synapses. Since the profiles of these STDPs are derived from the
repetitive applications of spike pairs, some rules for determining spike pairs
must be assumed in two trains of numerous spikes.

In Section 2.1, we briefly introduce the STDP of excitatory synapses. Section
2.2 describes some types of STDP of inhibitory synapses. Section 3 explains
some rules for determining spike pairs.

2.1 STDP of excitatory synapse

The relation of synaptic plasticity for excitatory synapses with the temporal
difference between presynaptic and postsynaptic activations has been electro-
physiologically observed (Markram et al., 1997; Bi and Poo, 1998; Froemke and
Dan, 2002). From the relation, postsynaptic potentials arriving after presy-
naptic potentials induce long-term potentiation, and postsynaptic potentials
arriving before presynaptic potentials induce long-term depression. Froemke
and Dan (2002) have derived a numerical description of the increase and de-
crease rates of synaptic plasticity F (∆t) [%] from electrophysiological data as
follows.

F (∆t) =




102 exp(− |∆t|
15.5

) (∆t > 0)

− 52 exp(− |∆t|
33.2

) (∆t < 0)
(1)

Here, ∆t [ms] is the temporal difference from a postsynaptic spike to a presy-
naptic spike.
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2.2 STDP of inhibitory synapse

Some relations of synaptic plasticity for inhibitory synapses with temporal dif-
ference between presynaptic and postsynaptic activations have been electro-
physiologically observed (Holmgren and Zilberter, 2001; Woodin et al., 2003;
Haas et al., 2006). Since these observations are quite different, each profile of
the STDP of inhibitory synapses is described as follows.

Holmgren and Zilberter (2001) have observed the changes in the efficacy of in-
hibitory postsynaptic potential depending on the temporal difference between
pre- and postsynaptic potentials by experiments using cortical slices of rats.
In their experiments, a conditioning train of 10 backpropagating dendritic ac-
tion potentials (APs) was initiated by 5-ms current injections in the soma
of a pyramidal neuron as a postsynaptic neuron at 50 Hz. In a presynaptic
neuron, an AP was initiated at different times relative to the beginning of the
conditioning train in the postsynaptic neuron. The pattern of sequential post-
and presynaptic stimulations was repeated every 5–7 sec 25–40 times. As a
result, the mean IPSP amplitudes was 160±16% at a relative time of 400 ms,
142 ± 6% at a relative time of 510 ms, 75 ± 6% at a relative time of 10 ms,
69 ± 0.05% at a relative time of 205 ms, and 58 ± 0.06% at a relative time of
250 ms. In short, a longer relative time resulted in the LTP of IPSPs, whereas
a shorter relative time resulted in the LTD of IPSPs.

Woodin et al. (2003) have examined the dependency of inhibitory synaptic
modification on the relative timing of pre- and postsynaptic spikings in hip-
pocampal slices of rats. In their experiments, current pulses were injected into
a postsynaptic neuron with presynaptic stimulation (5 Hz, 30 s), with the peak
of postsynaptic spiking relative to presynaptic activation varied from 0 to ±90
ms. They found a clear increase in the amplitude of inhibitory postsynaptic
current (IPSC) when the relative time was within ±20 ms, and found a small
but significant reduction in IPSC amplitude at a relative time of more than
+50 ms or less than −50 ms. This observation indicates a symmetrical window
for the modification of inhibitory synapses.

Haas et al. (2006) have reported experimental results of STDP at inhibitory
synapses in the entorhinal cortex of rats. They paired presynaptic stimulations
with single induced postsynaptic spikes, and varied the interval between those
stimuli between −25 and +25 ms at a rate of 2 Hz for 5 min. For the positive
relative timing, inhibitory responses potentiated, peaking at a delay of 10 ms.
For the negative relative timing, inhibitory responses depressed, again with
a maximal effect near 10 ms of delay. Namely, they found an asymmetrical
timing rule for the plasticity of inhibitory synapses.
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2.3 Rules for determining spike pairs

The profiles of most STDPs are derived from the repetitive applications of
spike pairs to obtain consistent synaptic modifications. In actual biological
neural networks, the spikes of pre- and postsynaptic neurons are induced by
numerous neurons. Thus, the critical question of whether each presynaptic
spike interacts with every postsynaptic spike is raised. As a possible answer
to the question, many rules for determining spike pairs have been assumed
in two trains of many spikes. Among them, all-to-all and nearest-neighbor
pairing rules have been widely used (Bi, 2002; Zhu et al., 2006).

In the all-to-all interaction rule, it is assumed that each presynaptic spike
interacts with each postsynaptic spike. On the other hand, in the nearest-
neighbor interaction rule (van Rossum et al., 2000; Bi, 2002; Sjöström et al.,
2001), the first presynaptic (postsynaptic) spike after a given postsynaptic
(presynaptic) spike can produce plasticity. Alternatively, Zhu et al. (2006) have
proposed a latest-neighbor interaction, in which at any time instant only the
latest-neighbor pairs of pre- and postsynaptic spikes contribute to plasticity.
Their theoretical and numerical studies reveal that STDP with the latest-
neighbor pairing rule can generate stable and more realistic distributions of
synaptic conductance. Thus, we investigate the above three spike pairing rules.
For simplicity, it is assumed that the pairing rules are independent between
the effects of different spike pairings.

3 Proposed model

We propose a neural circuit model forming a semantic network with exceptions
using the spike-timing-dependent plasticity of inhibitory synapses, based on
the neural circuit model forming a semantic network proposed by Kobayashi
and Murakoshi (2007). The proposed model is shown in Fig. 1, and its out-
line is described below. This model has been provided two association cortex
2 layers: the association cortex 2a layer maintains episodic memory, whereas
the association cortex 2b layer maintains semantic memory. Each state of the
model neuron in each layer is synchronously renewed. The circle indicates a
layer including some model neurons. The solid arrow means all-to-all con-
nections, whereas the dashed arrow means one-to-one connections. The thick
arrow connections are changed by the STDP learning rule while the thin ar-
row connections are constant. The thick dotted arrow are appended in this
paper as recurrent inhibitory connections learned through the STDP learning
rules of inhibitory synapses. This thick dotted arrow represents all-to-all con-
nections. Using recurrent inhibitory connections, we expect to depress general
memory in forming a semantic network with an exception in a neural circuit.
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The reason only recurrent inhibitory connections in the 2b layer are appended
is as follows. Most inhibitory connections in the real brain are localized. Ad-
ditionally, we focus on a semantic network in this paper. For simplicity, in-
hibitory connections are recurrent although in the real brain such connections
are via inhibitory interneurons.

The association cortex 2b layer receives inputs from association cortex 1
(xcx1

i ), hippocampal CA1 (xca1
i ), subiculum, (xsub

i ), association cortex 2b (re-
current excitation x2b

i ), and the association cortex 2b (recurrent inhibitory
x2b

i ), whose propagation delays are ∆tcx2b·cx1, ∆tcx2b·ca1, ∆tcx2b·sub, ∆tcx2b·cx2b,
and ∆tcx2b·cx2b,inh, respectively. The state xcx2b

i of the i-th neuron in association
cortex 2b is modified to

xcx2b
i (t) =f


 N∑

j

wcx2b·cx1
ij xcx1

j (t − ∆tcx2b·cx1)

+ xca1
i (t − ∆tcx2b·ca1)

+ xsub
i (t − ∆tcx2b·sub)

+
N∑
k

wcx2b·cx2b
ik xcx2b

k (t − ∆tcx2b·cx2b)

+
N∑
k

wcx2b·cx2b,inh
ik xcx2b

k (t − ∆tcx2b·cx2b,inh)

− θcx2b


, (2)

where N is the number of neurons in a layer, f(·) is the step function which
outputs 1 when inputs are greater than 0, θcx2b is the threshold, and xcx2b

i = 1
means firing. As for synaptic weight, for example, wlayerA·layerB

ij indicates the
weight from the j-th neuron in layer B to the i-th neuron in layer A. The
connections wcx2b·cx2b,inh

ik are learned by applying the STDP rule for inhibitory
synapses, whereas the connections wcx2b·cx1

ij and wcx2b·cx2b
ik are learned by apply-

ing the STDP rule for excitatory synapses. The upper limits of their connec-
tions are set to wcx2b,inh

max and wcx2b
max , respectively. All others except the above-

mentioned structure and setting are the same as those in the model proposed
by Kobayashi and Murakoshi (2007).

We examine three profiles of the STDP of inhibitory synapses, as introduced in
Section 2.2. Here, the profiles of the STDP of inhibitory synapses are expressed
as a numerical formula for presenting a computational model. The ratio of the
change in relative synaptic weight as a function of the relative time ∆t is
expressed as ∆w(∆t), where n is the number required to induce the synaptic
change per unit time.

First, the STDP rule for inhibitory synapses derived from the experiment by
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Fig. 1. Proposed model.

Holmgren and Zilberter (2001) is approximately expressed as

∆w(∆t) =




(∆t/400.0 ∗ 0.6 + 0.9)/n + 1 (−600 ≤ ∆t ≤ −200)
(∆t/200.0 ∗ −0.96 − 0.36)/n + 1 (−200 < ∆t < 0)
1 (otherwise)

.(3)

This profile at n = 1 is plotted in Fig. 2. For simplicity, only one postsynap-
tic AP without a train could cause STDP; ∆t is redefined as the temporal
difference between the presynaptic AP and the ending of the AP train in the
experiment (Holmgren and Zilberter, 2001). The notable features of this pro-
file are that only a negative relative time window is available, and that the
width of the relative time window is larger than those of the other profiles.

Second, the STDP rule for inhibitory synapses derived from the experiment
by Woodin et al. (2003) is approximately expressed as

∆w(∆t) =
[
1.50 ∗ exp(−0.004 ∗ (∆t2))

−0.50 ∗ exp(−0.0003 ∗ (∆t)2)
]
/n + 1. (4)

This profile at n = 1 is plotted in Fig. 3. This profile is expressed by the
difference of two Gaussian functions. This profile has a symmetrical relative
time window.

Third, Haas et al. (2006) expressed the STDP rule of inhibitory synapses
derived from their experiment as

∆w(∆t) =
{

1 + a1 · (∆t)10 exp(a2∆t)/n (∆t < 0)
1 + a3 · (∆t)10 exp(a4∆t)/n (∆t > 0)

, (5)

a1 = −2.60e–7 a2 = 0.94,
a3 = 2.29e–6 a4 = −1.10.

This profile at n = 1 is plotted in Fig. 4. This profile has an asymmetrical
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Fig. 2. Profile of STDP of inhibitory synapses by Holmgren and Zilberter (2001).
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Fig. 3. Profile of STDP of inhibitory synapses by Woodin et al. (2003).
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Fig. 4. Profile of STDP of inhibitory synapses by Haas et al. (2006).

4 Simulation

To examine the formation of a semantic network with an exception by the
proposed method, we conduct many computer simulations. The parameters
used in these simulations are shown in Table 1. The other parameters are
the same as those used by Kobayashi and Murakoshi (2007). Total simulation
time, the input frequency of sequential patterns, and the number for making
synaptic change per unit time are varied. The initial inhibitory weight is the
same as the excitatory weight. The upper limit set by the STDP of inhibitory
synapses is the same as that set by the STDP of excitatory synapses. The
inhibitory recurrent propagation delay is twice the excitatory propagation
delay, because we consider that the inhibitory recurrent connection is assumed
to pass from an excitatory neuron to an excitatory neuron via an inhibitory
neuron.

The input patterns are of 10 types (A–J), where each pattern consists of
five non-overlapping elements. In these simulations, it is assumed that A, B,
C, D, and E mean “canary”, “bird”, “can fly”, “ostrich”, and “cannot fly”,
respectively. The description (ABC) denotes a time sequence pattern, and A,
B, and C are sequentially input; (ABC) means “a canary is a bird, and can
fly”. The symbol ‘?’ of the description (AB?) denotes an arbitrary pattern
except A and B, for examples, the description (AB?) means (ABC), (ABD),
· · · ; (AB?) means “a canary is a bird” with an arbitrary attribute.
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In the above-mentioned simulations, the exception focused on in this research
is simply expressed as follows. The exceptional inputs are (DE?) and (DB?) as
the exception “the ostrich is a bird but cannot fly”, whereas the regular inputs
are (BC?), (AB?), and (AC?) as the episode including the general fact “birds
can generally fly”. Thus, the five sequential patterns (AB?), (AC?), (BC?),
(DB?) and (DE?) are input to the proposed model for learning.

We conduct nine types of computer simulations by combining the three STDP
rules of inhibitory synapses and three spike pairing rules. After each learning,
the patterns A, B, C, D, and E are input to confirm the formations of memo-
ries as results. The results are shown in the following Figs. 5–10. In the figures,
the horizontal axis indicates time while the vertical axis indicates the output
of each neuron composing the patterns. The figures show the outputs of asso-
ciation cortex 1 (input layer) and 2b (output; semantic memory layer) from
the top to the bottom. The squares in the figures indicate firings of neurons.
The results obtained with the all-to-all spike pairing rule are omitted, because
the results with all STDP rules of inhibitory are unsuccessful in a forming
semantic network with an exception.

Figures 5 and 6 indicate the results obtained with the STDP rule by Holmgren
and Zilberter (2001). From the results in both figures, when the patterns A,
B, C are input, the output patterns are successfully recalled: A, B, and C for
input A, all for input B, and A, B, and C for input C. However, when the
patterns D and E are input, the output patterns are unsuccessfully recalled:
both C and E for input D or E, that is, “can fly” and “cannot fly” for the
input “ostrich” or “cannot fly”.

Figures 7 and 8 indicate the results obtained with the STDP rule by Woodin
et al. (2003). These results are quite similar to those obtained with the STDP
rule by Holmgren and Zilberter (2001); the output patterns are unsuccessfully
recalled for the input D or E.

Figures 9 and 10 indicate the results obtained with the STDP rule by Haas
et al. (2006). The results are different from the above results; the output
patterns are successfully recalled even for the input D or E. This means that
“can fly” is suppressed for the input “ostrich” or “cannot fly”.

ch:param

We examine the inhibitory connections obtained in the above simulations in
order to investigate how to form a semantic network with an exception. The
inhibitory connections are shown in the following Figs 11–14. In the figures,
an arrow indicates inhibitory connection whose weight is more than 0.02. The
figures of inhibitory connections obtained with the STDP rule by Holmgren
and Zilberter (2001) are omitted, because there are no connections whose
weight is more than 0.02. Figures 11 and 12 indicate the inhibitory connec-
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Table 1
List of parameters.

parameter value
total simulation time T variable
input frequency of sequence patterns variable
number for making synaptic change per unit time n variable
propagation delay from CA1 to CX2b

direct ∆tcx2b·ca1 15[ms]
via subiculum ∆tsub·ca1 + ∆tcx2b·sub 21[ms]

initial inhibitory weight from CX2b to CX2b 0.002
upper limit of CX2b by STDP of inhibitory synapses wcx2b,inh

max 0.2
inhibitory recurrent propagation delay in CX2b ∆tcx2b·cx2b,inh 10[ms]
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Fig. 5. Simulation result obtained with STDP rule by Holmgren and Zilberter
(2001) and latest-neighbor rule.

tions obtained with the STDP rule by Woodin et al. (2003), which is for an
unsuccessful case. On the other hand, Figures 13 and 14 indicate the inhibitory
connections obtained with the STDP rule by Haas et al. (2006), which is for
a successful case. By comparing these connections to each other, the following
fact is proved. The inhibitory connection from the pattern D (“ostrich”) to
the pattern C (“can fly”) is necessary to suppress the output pattern C. The
connection is only available in Figs. 13 and 14 as successful cases, and not in
Figs. 11 and 12 as unsuccessful cases. The connections from B to E and from
E to C that are available only in Fig. 14 are not essential, because they are
not available in Fig. 13 as a successful case.
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Fig. 6. Simulation result obtained with STDP rule by Holmgren and Zilberter
(2001) and nearest-neighbor rule.

In summary, the above results and examinations suggest that inhibitory con-
nections are essential for forming a semantic network with an exception. More-
over, inhibitory connections are suggested to be connections from the concept
linked with an exceptional feature to the general feature.

5 Conclusions

We proposed a neural circuit model forming a semantic network with ex-
ceptions using the spike-timing-dependent plasticity (STDP) of inhibitory
synapses. To evaluate the proposed model, we conducted nine types of com-
puter simulation by combining the three STDP rules for inhibitory synapses
and the three spike pairing rules. The simulation results obtained with the
STDP rule for inhibitory synapses by Haas et al. (2006) are successful, whereas
the other results are unsuccessful. The results and examinations suggested that
the inhibitory connection from the concept linked with an exceptional feature
to the general feature is necessary for forming a semantic network with an
exception.

Here, we discuss the profiles of three STDP rules of inhibitory synapses (Holm-
gren and Zilberter, 2001; Woodin et al., 2003; Haas et al., 2006). We think
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Fig. 7. Simulation result obtained with STDP rule by Woodin et al. (2003) and
latest-neighbor rule.

that the reasons the results obtained with the STDP rule by Holmgren and
Zilberter (2001) are unsuccessful are: only the negative relative time window
is available, and the width of the relative time window is larger than those of
the other profiles. In the case with the STDP rule by Woodin et al. (2003), we
think that the reason is symmetrical profile. In contrast, the profile by Haas
et al. (2006) is asymmetrical, and the width of the relative time window is
appropriate.

We think that the two STDP rules for inhibitory synapses by Holmgren and
Zilberter (2001) and Woodin et al. (2003) are utilized for other functions ex-
cept for forming a semantic network with an exception. The investigation of
such functions is reserved for future work. Finally, we hope to verify the func-
tion of inhibitory synapses suggested in this study through actual biological
experiments.
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Fig. 10. Simulation result obtained with STDP rule by Haas et al. (2006) and
nearest-neighbor rule.
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Fig. 11. Inhibitory connections obtained with STDP rule by
Woodin et al. (2003) and latest-neighbor rule.
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Fig. 12. Inhibitory connections obtained with STDP rule by
Woodin et al. (2003) and nearest-neighbor rule.
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Fig. 13. Inhibitory connections obtained with STDP rule by
Haas et al. (2006) and latest-neighbor rule.
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Fig. 14. Inhibitory connections obtained with STDP rule by
Haas et al. (2006) and nearest-neighbor rule.
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