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Abstract

We propose a neural circuit model of changes in amount of information maintained
in short-term memory depending on stimuli relationships. The relationships between
stimuli are represented by the synchronous firings of overlapping neuronal groups for
semantically related stimuli and the excitatory mutual connections for semantically
unrelated but simultaneously presented stimuli. We conduct computer simulations
to confirm our proposed neural circuit model. The resultant numbers of stored
informational input patterns are almost consistent with the maximum numbers in
the psychological experiments for both semantically related and unrelated stimuli.
This agreement with the psychological experiments suggests that the structure and
informational representation of the proposed model are appropriate.
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1 Introduction

Memory plays an important role in higher-order human functions such as
recognition, reasoning, and thinking. These higher-order functions cannot be
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performed in the absence of memory. Memory has been classified into two
major forms by duration: short-term memory (STM) and long-term mem-
ory (LTM) (Waugh and Norman, 1965; Atkinson and Shiffrin, 1971). STM
plays an essential role in such functions as sentence comprehension and men-
tal arithmetic, although LTM is also required. Miller (1956) suggested that
the capacity of STM is 7±2 chunks, independent of the information contained
in each chunk. The chunk is a unit of memory organization formed by bringing
together a set of already-formed elements, which might be chunks themselves
in certain cases. Examples of the chunks in an article include character, word,
phrase, sentence, and so on.

Since the chunk is a variable unit, the amount of information that can be
maintained in STM is not always fixed. The more information gathered into
a chunk, the greater the amount of information that can be memorized. The
results of previous psychological experiments (Miller, 1956; Hunt and Seta,
1984; Miyake and Uchida, 1923; Lupien et al., 1994) suggest that the amount of
information maintained in STM changes depending on relationships between
the units of information themselves.

The biologically plausible model network simulating seven-chunk capacity of
STM was proposed by Lisman and Idiart (1995). This model network consists
of after-depolarization (ADP) and rapid feedback inhibition onto pyramidal
model neurons. The model network can encode information in gamma cycles
oscillatory subcycles within main theta cycles. This phenomenon leads to the
magical number seven. Based on the model proposed by Lisman and Idiart
(1995), Usher et al. (2001) proposed a competitive model network explaining
the new magical number 4 ± 1 presented by Cowan (2001, 2005). The new
magical number 4 ± 1 is the capacity limit for working memory, which is a
theoretical framework referring to the processes used for STM and for ma-
nipulating information. The working memory capacity is generally restricted
by attention, time, interference, and other factors. Although the two afore-
mentioned model networks (Lisman and Idiart, 1995; Usher et al., 2001) can
show some aspects of STM capacity, they cannot explain how the amount of
information maintained in STM increases.

Some neurophysiological experiments (Tsunoda et al., 2001; Freedman et al.,
2001; Gray et al., 1989) suggest that semantic relationships having common
features are represented by the oscillatory synchronous firings of overlapping
neuronal groups. On the other hand, the relationship of semantically unrelated
but simultaneously presented stimuli (Miyake and Uchida, 1923; Lupien et al.,
1994) also plays a role in changing the amount of maintained information
available. It is thought that the neuronal groups corresponding to such stimuli
are excitedly connected with each other.

We propose a neural circuit model of STM with changes in the amount of
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Fig. 1. Proposed model.

maintained information depending on the same relationships indicated by the
psychological experiments. In the proposed model, the relationships between
stimuli are represented by the synchronous firings of overlapping neuronal
groups for semantically related stimuli and the excitatory mutual connec-
tions for semantically unrelated but simultaneously presented stimuli. Mutual
connections between excitatory model neurons are learned by spike-timing-
dependent synaptic plasticity (STDP), because these relationships are not
intrinsically obtained. To evaluate the proposed model, we conduct computer
simulations. We compare the amounts of maintained information in computer
simulations with the results of the previous psychological experiments.

The remainder of this paper is organized as follows. In Section 2, we propose
a neural circuit model of STM with changes in the amount of maintained
information depending on the relationships between stimuli. Section 3 shows
the results of our computer simulation to confirm our proposed model. Section
4 presents our conclusions.

2 Proposed Model

Our proposed model network is shown in Fig. 1. The proposed model consists
of informational input, θ-band oscillatory input, excitatory pyramidal neu-
rons, and feedback inhibitions, same as the model proposed by Lisman and
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Idiart (1995). However, mutual excitatory connections between the excitatory
pyramidal neurons are newly added. The mutual excitatory connections are
very similar to the extended model (Jensen and Lisman, 1996) of the base
model (Lisman and Idiart, 1995). The difference between the extended model
and the proposed model is that the mutual excitatory connections are variable
by the STDP learning rule.

The remainder of this Section is organized as follows. In Section 2.1, we de-
note the dynamics of a model neuron. Section 2.2 explains how to encode the
relationships between stimuli. Section 2.3 and 2.4 present the excitatory and
inhibitory connections, respectively, that enable the encoding of the relation-
ships.

2.1 Dynamics of the Model Neuron

When an object to be stored in memory is presented, the corresponding model
n-neurons are injected with a 15 mV pulse current. We call this pulse current,
simultaneously injected to the model n-neurons, an informational input pat-
tern. When the entire set of corresponding model n-neurons fires simultane-
ously, the informational input pattern for the object can be stored in STM.

The membrane potential Vi(t) of the i-th excitatory model neuron at time t

is given by the following equations:

τv

dVi(t)

dt
= −Vi(t) + V rest + V OSC(t)

+ V ADP
i (t) + V inh(t) + rmIext, (1)

V inh(t) =
∑

Ainh t − tk

τ inh
exp

(

1 − (t − tk)

τ inh

)

, (2)

V ADP
i (t) =

∑

AADP t − tk

τADP
exp

(

1 − (t − tk)

τADP

)

, (3)

V OSC = B sin(2πft), (4)

Iext =
N
∑

j

wijg(i), (5)

where V inh and V ADP
i are the voltage affected by the inhibitory connections

and ADP, respectively, Iext is the external input current, rm is the membrane
resistance, and N is the total number of excitatory model neurons. τv, τ inh, and
τADP are the time constants for the membrane potential, inhibition, and ADP,
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respectively. Ainh and AADP are the maximum amplitudes of the inhibition
and ADP, respectively. tk is the time of the k-th spike in the network. f is the
frequency of the θ-wave, and B is the amplitude of the θ-wave. If Vi(t) exceeds
the threshold V thresh, the model neuron fires and Vi(t) is reset to V rest. g(·) is
the function that outputs 1 when the model neuron fires; otherwise, the model
neuron outputs 0. wij is the weight from the i-th model neuron to the j-th
model neuron.

2.2 Encoding of Relationships

We encode two types of relationships: semantically related stimuli and seman-
tically unrelated but simultaneously presented stimuli. The former relation-
ship is encoded by the oscillatory synchronous firings of overlapping neuronal
groups while the latter relationship is encoded by mutual excitatory connec-
tions among neuronal groups. The encoding of these two types of relationships
is illustrated in Fig. 2, where a neuronal group consists of four neurons.

In storage of objects A and B, the two central neurons are the common com-
ponents that represent the common features (semantically related stimuli) of
the two objects. For instance, when A is human and B is monkey, polypha-
gia and viviparity are examples of common features. The greater number of
common components, the more the two objects are similar to each other. As
the similarity increases, the amount of information maintained in STM will
increase depending on the ratio of the number of common components to the
number of neurons in a group.

In storage of objects C and D, the two neuronal groups corresponding to
the objects are excitedly connected each other. In this case, the stronger the
mutual excitatory connections, the stronger the relationship between the two

A B

C D

Fig. 2. Encoding of two types of relationships: overlapping neuronal groups (top)
and mutual excitatory connections among neuronal groups (bottom).
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objects. As the relationship is strengthened, the amount of information main-
tained in short-term memory will increase depending on the weight strength
among the neuronal groups.

2.3 Excitatory Connections

The excitatory connections for the informational input and the oscillatory
input are fixed. The excitatory connections from the excitatory model neu-
rons to the inhibitory neurons are also fixed. On the other hand, the mutual
excitatory connections are variable; that is, they are learned by STDP.

STDP is a minute time resolution version of the well-known Hebb learning
rule. The profile of STDP has been observed electrophysiologically (Markram
et al., 1997; Bi and Poo, 1998; Froemke and Dan, 2002). From the profile,
postsynaptic potentials arriving after presynaptic potentials induce long-term
potentiation, and postsynaptic potentials arriving before presynaptic poten-
tials induce long-term depression. Froemke and Dan (2002) have derived a
numerical description of the increase and decrease rates of synaptic plasticity
w(∆t) % from electrophysiological data as follows:

∆w(∆t) =











1.02 exp −|∆t|
15.5

(∆t > 0)

−0.52 exp −|∆t|
33.2

(∆t < 0),
(6)

where ∆t [ms] is the temporal difference from a postsynaptic spike to a presy-
naptic spike.

2.4 Inhibitory Connections

In the original model proposed by Lisman and Idiart (1995), the firings of
the excitatory neurons are separated by feedback inhibition. In our proposed
method, since one object to be stored is represented by the n-neurons as an
informational input pattern, the inhibitory weight strength is divided by n.

3 Simulation

We conducted computer simulations to confirm our proposed neural circuit
model of STM for changes in the amount of maintained information depending
on stimuli relationships. The membrane potential was calculated by the Euler
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Table 1
List of parameters.

Parameter Value

Total simulation time, T (ms) 32,000

Total number of neurons, N 128

Number of neurons for an object, n 8

Interval between input patterns (ms) 2,000

Propagation delay of excitatory neurons (ms) 0.35

Propagation delay of inhibitory neurons (ms) 0.05

Maximum excitatory weight strength 0.4

Initial value of excitatory weight strength 0.01

Inhibitory weight strength 0.5

Membrane resistance, rm 2.0

Membrane time constant, τv(ms) 0.1

Threshold, V thresh(mV ) −50

Resting membrane potential, V rest(mV ) −60

Time constant for inhibition, τ inh (ms) 5

Amplitude of inhibition, Ainh(mV ) −4

Time constant for ADP, τADP (ms) 200

Amplitude of ADP, AADP (mV) 10

Frequency of θ-wave, f (Hz) 6

Amplitude of θ-wave, B (mV) 5

method with a time step of 0.05 ms. The parameters used in these simulations
are shown in Table 1.

In both types of relationships, each informational input pattern has to be
learned by STDP before conducting the simulations that investigate the num-
ber of informational input patterns that may be stored in STM. Before learning
of each informational input pattern, the mutual excitatory weight strengths
were initialized to a small value. Here, an object consisted of the correspond-
ing model 8-neurons. During learning of each informational input pattern, the
corresponding model 8-neurons were activated periodically with a frequency of
θ, f , at random timing. Each informational input pattern was learned in this
manner for 70,000 ms. For simplicity, we used 8 pairs of informational input
patterns, making the total number of learned informational input patterns 16.
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Fig. 3. Example of firing patterns.

We considered an informational input stored in STM when the entire model
8-neurons for the informational input fired within 1 ms, in consideration of
neurophysiologically accurate firing time (Mainen and Sejnowski, 1995).

3.1 Semantically Related Stimuli

We simulated storage in STM to investigate how many informational input
patterns are stored in STM depending on the semantical strength between
related stimuli, that is, the ratio of the number of common components to
the number of neurons in a group. After learning each informational input
pattern separately, 8 pairs of informational input patterns were presented to
the proposed model successively, with a 2,000 ms interval between individual
pairs in the various number of common components.

Figure 3 shows an example of results with 6 common components in each
pair. In this case, the number of stored informational input patterns is 12. We
show the summary results in Fig. 4. The vertical axis is the number of stored
informational input patterns and the horizontal axis is the number of common
components.

When the number of common components is zero, the number of stored in-
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Fig. 4. Number of stored informational input patterns versus number of common
components.

formational input patterns is 7. This is consistent with the magical number
7 suggested by Miller (1956). The number of stored informational input pat-
terns increases with increase in the number of common components. The max-
imum number of stored informational input patterns is 14. The number 14 is
consistent with the maximum number in the psychological experiments for
semantically related pairs (Miyake and Uchida, 1923; Lupien et al., 1994).

3.2 Semantically Unrelated but Simultaneously Presented Stimuli

We simulated storage in STM to investigate the number of informational in-
put patterns that can be stored in STM depending on the simultaneous pre-
sented frequency of unrelated stimuli, that is almost proportional to the weight
strength between the informational input patterns. After learning each infor-
mational input pattern separately, 8 pairs of informational input patterns were
presented to the proposed model successively, with a 2,000 ms interval with in-
dividual pairs in the various weight strength between the informational input
patterns.

Figure 5 shows the number of stored informational input patterns versus
weight strength between informational input patterns. When the weight strength
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Fig. 5. Number of stored informational input patterns versus weight strength be-
tween informational input patterns.

is greater than 0.05, the number of stored informational input patterns is sat-
urated, that is, a value of 10 is achieved. The number 10 is almost consistent
with the maximum number in the psychological experiments for semantically
unrelated pairs (Miyake and Uchida, 1923; Lupien et al., 1994).

4 Conclusions

We propose a neural circuit model of STM in which the amount of main-
tained information changes depending on relationships of the stimuli. The re-
lationships between stimuli are represented by the synchronous firings of over-
lapping neuronal groups for semantically related stimuli and the excitatory
mutual connections for semantically unrelated but simultaneously presented
stimuli. We conducted computer simulations to confirm the proposed neural
circuit model. The numbers of stored informational input patterns are almost
identical to the maximum number in the psychological experiments for both
semantically related and unrelated pairs (Miyake and Uchida, 1923; Lupien
et al., 1994). This agreement with the psychological experiments suggests that
the structure and informational representation of the proposed model are ap-
propriate.
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For simplicity, the current simulation results were only for the case of restoring
pairs of input at the same time. We believe our proposed model also predicts
the results for the case of restoring more than three inputs at the same time.

A wide variety of tasks concerning STM are possible. Note that the current
results show only the upper limit of the amount of maintained information,
because this issue focuses on how the amount of information maintained in
STM increases. The memory capacity is generally restricted by factors such as
attention, time, interference, and other considerations. The restricted memory
capacity was discussed by Usher et al. (2001), Cowan (2005), and others.

In our current work, for simplicity, we deal with the inhibitory connections
– important for the functions of storing STM – as fixed. Because some types
of STDP of inhibitory synapses were physiologically observed (Holmgren and
Zilberter, 2001; Woodin et al., 2006; Haas et al., 2006), we will introduce a
STDP model of inhibitory synapse into our proposed method in the future
work. Finally, we hope to verify the coding methods of stimuli relationships
suggested in this study through actual biological experiments.
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