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Abstract

We propose a neural circuit model of emotional learning using two pathways with
different granularity and speed of information processing. In order to derive a
precise time process, we utilized a spiking model neuron proposed by Izhikevich
and spike-timing-dependent synaptic plasticity (STDP) of both excitatory and in-
hibitory synapses. We conducted computer simulations to evaluate the proposed
model. We demonstrate some aspects of emotional learning from the perspective of
the time process. The agreement of the results with the previous behavioral exper-
iments suggests that the structure and learning process of the proposed model are
appropriate.
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1 Introduction

Animals, including humans, learn on the basis of experience and memory, with
emotions, and increase their survival probability through reactions involving
emotional memory. Such learning is called emotional learning (Uwano and
Ono, 1997; LeDoux, 1996). It was clarified that the primary region for emo-
tional learning is the amygdala (LeDoux, 1996). LeDoux (1996) suggested on
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the basis of physiological and anatomic findings that two pathways, thalamo-
amygdala (direct) and thalamo-cortico-amygdala (indirect) pathways, play im-
portant roles in emotional learning. The direct pathway can process faster than
the indirect pathway, although the information is coarser. On the other hand,
the indirect pathway processes information in more detail, but more slowly.
The direct pathway may be particularly useful in situations requiring a rapid
response; it is a rough processing system.

Armony et al. (1997) proposed a neural circuit model of emotional learning
using two pathways with different granularity of information processing. How-
ever, the model cannot account for the time process of emotional learning
because the model does not include a precise time process. Moreover, the
model does not clarify the circuit problem whereby neurons in the memory
consolidation site for emotion do not directly contact the central nucleus (CE)
of the amygdala that provides the principal source of emotional outputs (Paré
et al., 2004).

We propose a neural circuit model of emotional learning using two pathways
with different granularity and speed of information processing. In order to
derive a precise time process, we utilized a spiking model neuron proposed by
Izhikevich (2007) and spike-timing-dependent synaptic plasticity (STDP) of
both excitatory and inhibitory synapses. We conducted computer simulations
to evaluate the proposed model. We demonstrate some aspects of emotional
learning from the perspective of a time process.

The remainder of this article is organized as follows. In Section 2, we propose a
neural circuit model of emotional learning using two pathways with granularity
and different speed of information processing. Section 3 describes the results
of a computer simulation to examine the proposed model. Section 4 presents
our conclusions.

2 Proposed Model

Our proposed model network is shown in Fig. 1. The proposed model consists
of sensory input, thalamus, cortex, and the amygdala. The route of the condi-
tioned stimulus (CS) includes variable connections, whereas the route of the
unconditioned stimulus (US) is fixed. In the thalamus, the neuronal groups
directly connected to amygdala are partially received from the sensory input
whereas the neuronal groups connected to cortex are fully received. This cor-
responds to a difference in the granularity of information processing. In the
cortex, semantic conversion means that the primary features are converted to
semantic features in the association cortex area through an excitatory and in-
hibitory network. The semantic conversion is supposed to be learned in a past.
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Fig. 1. Proposed model. Solid and dotted connections indicate fixed and variable
connections, respectively. Opened and filled arrowheads indicate excitatory and in-
hibitory connections, respectively.

In the amygdala, the lower side is the medial sector of the central amygdala
(CEm) that provides the principal source of emotional outputs (Paré et al.,
2004), whereas the upper part is the lateral division of the central nucleus
(CEl), including the lateral capsular division (CEc). Wilensky et al. (2006)
showed that the central nucleus (CE) is involved not only in the expression
but also in the acquisition of emotional learning. The CEl receives input from
both the cortex and the thalamus, whereas the CEm receives from only the
thalamus. That is, the CEl is a full memory consolidation site whereas the
CEm is a partial one. Thus, the inhibitory interneurons between the CEl and
CEm are supposed to compensate for the partial memory consolidation of
the CEm. Here, the left and right sides of the amygdala are supposed to be
opposed to each other, for instance, for fear and calmness.
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In order to derive a precise time process, we utilized a spiking model neuron
proposed by Izhikevich (2007). The model neuron was reduced from a number
of biophysically accurate Hodgkin–Huxley-type neuronal models to a two-
dimensional system ordinary differential of the form

v̇ = 0.04v2 + 5v + 140− u + Iext(t) (1)

u̇ = a(bv − u) (2)

with the auxiliary after-spike resting

if v ≤ 30 mV, then







v ← c

u← u + d.
(3)

The external current Iext(t) is expressed as

Iext(t) = −
∑

i
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exp
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−
t−t

f
i

τi

)

if t ≤ tfi

0 if t < tfi

(5)

Here, v represents the membrane potential of the model neuron, u represents
a membrane recovery variable, a, b, c, and d are dimensionless parameters, t is
time, gsyni(t) is the time-varying synaptic conductance for the i-th spike, Vrest

is the reversal potential, wi is the weight ratio, Ai is the maximum amplitude,
tfi is the arrival time, and τi is the time constant. The parameter set for regular
spiking (RS), a = 0.02, b = 0.2, c = −65, and d = 8.0, is used for excitatory
neurons, whereas the parameter set for fast spiking (FS), a = 0.10, b = 0.2,
c = −65, and d = 2.0, is used for inhibitory neurons.

The solid connections shown in Fig. 1 are fixed, whereas the dotted connec-
tions are variable, that is, they are learned by STDP, which is a minute time
resolution version of the well-known Hebb learning rule. The STDP profile of
excitatory synapses has been observed electrophysiologically (Markram et al.,
1997; Bi and Poo, 1998; Froemke and Dan, 2002). From the profile, postsy-
naptic potentials arriving after presynaptic potentials induce long-term po-
tentiation, and postsynaptic potentials arriving before presynaptic potentials
induce long-term depression. Froemke and Dan (2002) derived a numerical de-
scription of the increase and decrease rates of synaptic plasticity w(∆t) from
electrophysiological data as follows:

∆w(∆t) =











1.02
n

exp −|∆t|
15.5

+ 1 if ∆t > 0

−
0.52
n

exp −|∆t|
33.2

+ 1 if ∆t < 0,
(6)

where ∆t (ms) is the temporal difference from a postsynaptic spike to a presy-
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naptic spike and n is the number for which the maximum rate is obtained.

On the other hand, Murakoshi and Suganuma (2007) indicated that the STDP
profiles of inhibitory synapses are quite different. They suggested that the
asymmetrical timing STDP rule for inhibitory synapses observed by Haas
et al. (2006) functions successfully in forming a semantic network with an ex-
ception. The results of the preliminary computer experiment showed that the
symmetrical timing STDP rule for of inhibitory synapses observed by Woodin
et al. (2003) functioned successfully for emotional learning in the amygdala
in this study. Murakoshi and Suganuma (2007) formulated the symmetrical
STDP rule observed by Woodin et al. (2003) as

∆w(∆t) =
[

1.50 ∗ exp(−0.004 ∗ (∆t2))

−0.50 ∗ exp(−0.0003 ∗ (∆t)2)
]

/n + 1. (7)

3 Simulation

We conducted computer simulations to confirm our proposed neural circuit
model of emotional learning using two pathways with different granularity
and speed of information processing. The membrane potential was calculated
by the Euler method with a time step of 0.01 ms. We utilized latest-neighbor
interaction (Zhu et al., 2006) as a spike paring rule, in which at any time in-
stant only the latest-neighbor pairs of pre- and postsynaptic spikes contribute
to plasticity.

The parameters used in these simulations are shown in Table 1. All parameters
are biologically plausible values. The difference in propagation delay between
the direct and indirect pathways was 7–73 (ms) by electrophysiological obser-
vations (Uwano and Ono, 1997). The simulation results between 27 and 53
(ms) were successful, and we now give the simulation results at 40 (ms). For
simplicity, the total number of neurons was 50, that is for the minimum for-
mation. n for excitation and inhibitions were 60 and 150, respectively, which
were taken from numbers of spike pairs in electrophysiological experiments
(Froemke and Dan, 2002; Woodin et al., 2003). Reversal potential for excita-
tory synapse was about 0 mV (Goforth et al., 1999), and reversal potential for
inhibitory synapse was about −70 mV (Martina et al., 2001). When intensity
for sensory input was 6.0, the frequency of neuronal firings was about 13 Hz,
which was usually observed as an electroencephalogram frequency of human
brain. Time constant for excitatory and inhibitory synapses were 1.0 ms and
8.0 ms, respectively, which were converted to single exponential formulation
expressed as Eq. (5) from electrophysiological observations (Zhou and Hablitz,
1998; Meis and Pape, 2001). Since the number of neurons was minimum, an
amplitude by single synapse is not significant in itself, that is, the balance
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Table 1
List of parameters.

Parameter Value

Total simulation time (ms) 80,000

Total number of neurons 50

Number for which the maximum rate is obtained for excitation, n 60

Number for which the maximum rate is obtained for inhibition, n 150

Duration of stimulus (ms) 19,000

Interval between stimulus (ms) 1,000

Intensity for sensory input 6.0

Difference of propagation delay between direct and indirect pathways (ms) 40

Propagation delay (except for from thalamus to CEm) (ms) 5.0

Propagation delay from thalamus to CEm (ms) 10.0

Maximum weight ratio 1.0

Initial value of weight ratio 0.2

Time constant for excitatory synapse 1.0

Time constant for inhibitory synapse 8.0

Maximum amplitude of excitatory synapse 1

Maximum amplitude of inhibitory synapse −115

Reversal potential for excitatory synapse (mV) 0.0

Reversal potential for inhibitory synapse (mV) −70.0

of the total amount of excitatory and inhibitory input is significant. When
maximum amplitude of excitatory synapse was fixed at 1, simulations were
succeeded with maximum amplitude of inhibitory synapse between −100 and
−128. We now give the simulation results at −115. This means that the total
amount of inhibitory input is more necessary than that of excitatory input.

We simulated emotional learning of fear and calmness, which are opposed to
each other. For fear, snake and painful are CS and US, respectively; for calm-
ness, rope and agreeable are CS and US, respectively. Figures 2 and 3 show
simulation results for rope and snake, respectively. The sensory input that cor-
responded to each period was set at Iext(t) = 6.0. Thus, each corresponding
neuron periodically fired during each period. In the first period in both simu-
lations, snake for the CS and painful for the US were associated. In the third
period in both simulations, rope for the CS and agreeable for the US were
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Fig. 2. Simulation result for rope.

associated. The second period was examined only for the only snake–painful
association. The fourth period was the final examination for both associations.
The second period of Fig. 2 shows that the emotional reaction was fear for
the rope input. This is because the association between rope and agreeable
had not been learned. The final result, the fourth period, of Fig. 2 shows that
emotional reactions for rope input were both fear and calmness at first; how-
ever, the fear reaction disappeared after a while. This result is consistent with
the time process of the emotional reaction of the human (LeDoux, 1994). The
result for snake as shown in Fig. 3 is similar to the result for rope; however,
the calmness reaction disappeared after a while.

We also conducted an inactivation simulation of the cortex for the CS. In Fig.
4, the model neurons in the cortex for CS were inactivated during the fourth
period. The fear reaction continued to appear despite the rope sensory input.
This result is consistent with the results obtained with experimental lesions
of the cortex (Teich et al., 1988).
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Fig. 3. Simulation result for snake.

4 Conclusions

We have proposed a neural circuit model of emotional learning using two path-
ways with different granularity and speed of information processing. In order
to derive a precise time process, we utilized spiking model neuron proposed
by Izhikevich (2007) and STDP of both excitatory and inhibitory synapses.
We demonstrated some aspects of emotional learning from the perspective of
the time process by conducting computer simulations. The agreement of the
results with the previous behavioral experiments suggests that the structure
and learning process of the proposed model are appropriate.

The proposed model is only one possibility for emotional learning. Thus, we
hope to verify the structure and learning process suggested in this study
through actual biological experiments.

References

Armony, J. L., Servan-Schreiber, D., Romanski, L. M., Cohen, J. D., LeDoux,
J. E., 1997. Stimulus generalization of fear responses: Effects of auditory

8



1
2
3

Sensory Input CS 4
1
2
3

Sensory Input US 4
1 (snake)

Cortex CS 2 (rope)
1 (Painful)

Cortex US 2 (Agreeable)
CEl 1 (Fear)

Amygdala CEl 2 (Calmness)
1

Inhibitory Interneuron 2
1 (Fear)

Amygdala CEm 2 (Calmness)

 0  10000  20000  30000  40000  50000  60000  70000  80000
time (ms)

Fig. 4. Simulation result with lesion of cortex for rope.

cortex lesions in a computational model and in rats. Cereb. Cortex 7, 157–
165.

Bi, G.-Q., Poo, M.-M., 1998. Synaptic modifications in cultured hippocampal
neurons: Dependence on spike timing, synaptic strength, and postsynaptic
cell type. J. Neurosci. 18, 10464–10472.

Froemke, R. C., Dan, Y., 2002. Spike-timing-dependent synaptic modification
induced by natural spike trains. Nature 416, 433–438.

Goforth, P. B., Ellis, E. F., Satin, L. S., 1999. Enhancement of AMPA-
mediated current after traumatic injury in cortical neurons. J. Neurosci.
19, 7367–7374.

Haas, J. S., Nowotny, T., Abarbanel, H. D. I., 2006. Spike-timing-dependent
plasticity of inhibitory synapses in the entorhinal cortex. J. Neurophysiol.
96, 3305–3313.

Izhikevich, E. M., 2007. Dynamical Systems in Neuroscience: The Geometry
of Excitability and Bursting. MIT Press, Cambridge, MA.

LeDoux, J., 1996. The Emotional Brain: The Mysterious Underpinnings of
Emotional Life. Simon and Schuster, New York.

LeDoux, J. E., 1994. Emotion, memory and the brain. Sci. Am. 270, 50–57.
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