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Abstract

In order to automatically obtain hierarchical knowledge representation from a cer-
tain data, an unsupervised learning method has been developed that overcomes two
problems of the growing hierarchical self-organizing map (GHSOM) method, which
uses the quantization error, the deviation of the input data, as evaluation measure of
the growing maps: proper control of the growth process of each map is difficult due
to the use of the quantization error and the clusters in the hierarchical structure may
be excessively subdivided. This improved GHSOM method uses the category utility
(CU), a measure used in conceptual clustering for predicting the preferred level of
categorization, instead of the quantization error. The CU is useful for organizing
the clustering so that people can effortlessly understand it. The basic principle of
this method is that the growth and unification processes are appropriately and au-
tonomously controlled by the CU. Evaluation using computer experiments showed
that the proposed method can automatically construct an appropriate hierarchical
and topological knowledge representation for high-dimensional input data through
unsupervised learning. It also showed that it is easier to use and more effective
than the original conventional GHSOM method using the quantization error as an
evaluation measure.
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1 Introduction

The use of self-organizing maps (SOMs) (Kohonen, 2001) is a prominent un-
supervised learning method and an automated adaptive knowledge represen-
tation scheme, for clustering and visualizing high-dimensional input data. Al-
though SOMs are widely used in various applications, they suffer at least two
limitations: a static network architecture in terms of map size and a limited
ability to represent the hierarchical data relationships.

These limitations led to the development of the “growing hierarchical self-
organizing map ” (GHSOM) method (Dittenbach et al., 2002; Rauber et al.,
2002). A GHSOM is an artificial neural network model with a hierarchical
architecture comprising independent growing self-organizing maps. GHSOM
method was applied to visualization of real data (Palomo et al., 2012; Chat-
topadhyay et al., 2014). Although it overcomes the two limitations, we indicate
the two problems as follows. First, it is possible that the growth process of
each map cannot be properly controlled because the quantization error, the
deviation of the input data, is not a suitable measure for clustering on each
map. Second, the clusters in the hierarchical structure excessively subdivided
when sub-maps are constructed due to the excessively detailed data represen-
tation. The primary cause of these problems is that the quantization error,
which serves as a measure of the quality of maps, cannot be used to appro-
priately evaluate the quality of input-data allocation. This makes it difficult
for the users of the GHSOM to provide appropriate depth and area parame-
ters for cluster formation. Therefore, an alternative measure is necessary for
automatically forming appropriate maps.

Such measures have been developed in the field of conceptual clustering (Michal-
ski et al., 1983). They are used to estimate the meanings of clusters. The
conventional conceptual methods (Fisher, 1987; Gennari et al., 1989; Li and
Biswas, 2002; Scanlan et al., 2006, 2008; Godoy and Amandi, 2006; Chien
et al., 2009), however, cannot learn the topology among the sub-clusters in
a cluster, whereas the GHSOM method can. We have developed an unsuper-
vised learning method for automatically constructing an appropriate hierar-
chical and topological knowledge representation for high-dimensional input
data. It uses an evaluation measure used in the field of conceptual clustering,
the category utility (CU) (Corter and Gluck, 1992; Gennari et al., 1989), in-
stead of the quantization error used in the GHSOM method. The CU is an
evaluation function used to predict, on the basis of psychological research, the
preferred level of categorization in human hierarchical organizations. It is thus
a useful measure for organizing the clustering so that people can effortlessly
understand it. The effort required is minimal because a hierarchical knowledge
representation can be automatically constructed. This is because the parame-
ter that determines the growth process of a map does not need to be set when
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using the CU, unlike when using the quantization error.

The remainder of this paper is organized as follows. In Section 2, we briefly
introduce the GHSOM method, and describe its problems. Section 3 explains
the CU. Section 4 describes our proposed method. Section 5 presents the
results of computer experiments used to evaluate our proposed method in
comparison with conventional methods. Section 6 concludes the paper with a
brief summary of the main points.

2 Growing hierarchical self-organizing map

2.1 Description

A GHSOM (Dittenbach et al., 2002; Rauber et al., 2002) is a growing hierar-
chical self-organizing map that resolves the two problems with conventional
SOM: (1) that users must set an appropriate map size before learning, and (2)
there is a limitation in intuitively representing hierarchical data relationships.
The sizes of the SOMs and the depth of the hierarchy of the GHSOM are de-
termined during unsupervised training processes in accordance with the data
structure. The depth of the hierarchy is defined as the maximum difference
between the uppermost layer and any other layer. After the training, the map
of the higher layer in the GHSOM provides a rather coarse organization of the
main clusters in the input data while the map of the lower layer provides a
more detailed organization.

In the GHSOM method, the growth processes are based on quantization errors.
The quantization error of unit i is represented by

qei =
∑
j

‖ mi − xj ‖, (1)

where mi is the reference vector of the i-th unit, and xj is the j-th input vector
that is mapped onto the i-th unit. The mean of the quantization errors (qei)
for all units on map m is represented by MQEm. Using these quantization
errors, the GHSOM method controls both the growth process for each SOM
and the global hierarchical growth process.

The procedure of the GHSOM is as follows.

(1) Create the 0-th unit in layer 0 (the upper most layer), calculate quanti-
zation error qe0, and define this unit as parent unit u.

(2) Create a new sub-map, m, in the next lower layer corresponding to parent
unit u; give it an initial size and set expansion number n to 0.
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(3) Train map m with a random order of inputs per period for T periods
in accordance with the standard SOM training procedure using a linear
decreasing learning rate (initial learning rate is α0) and Gaussian neigh-
borhood function.

(4) After the training, assign each input to the unit, i.e., cluster with the
smallest Euclidean distance from the input.

(5) Calculate quantization error qei of each unit, and calculate the mean
quantization error MQEm

n .
(6) If MQEm

n < τm · qeu, go to step 8; qeu is the quantization error of parent
unit u for the i-th unit in the present layer and τm (0 < τm < 1) is the
parameter that controls the size of the map.

(7) Expand map m on the basis of the error unit with the maximum quan-
tization error (n := n + 1), and go to step 3.

(8) If MQEm
n ≥ τh · qe0, set each i-th unit in map m to parent unit u and go

to step 2; τh (0 < τh < 1) is the parameter that controls the creation of
the lower hierarchical maps.

In this map expansion process, a row or column of units is inserted into map
m as illustrated in Fig. 1 (a). The insertion location is the place between
the error unit and the dissimilar unit, as shown in Fig. 2. The error unit
is the unit with the highest quantization error, and the dissimilar unit is
the nearest neighboring unit with the maximum Euclidean distance between
its reference vector and the reference vector of the error unit. To obtain a
smooth positioning of the newly added units in the input space, their initial
reference vectors are set to the average of the reference vectors for their nearest
neighbors.

2.2 Problems

We have already indicated the two problems of the GHSOM method as follows.

• Because the growth processes are based on the quantization error, they are
difficult to properly control.

• Because the classifications are excessively detailed in the maps, the clusters
in the hierarchical structure are unnecessarily subdivided.

Regarding the first problem, the quantization error is not a suitable measure
for clustering on each map. It is not suitable because it becomes smaller as the
number of units increases. Therefore, it does not provide sufficient informa-
tion for goodness of clustering on each map. Thus, the GHSOM restricts the
expansion of maps on the basis of parameter τm, which the user adjusts. It is
hard for the user to determine an appropriate value for τm. Therefore, growth
processes based on the quantization error cannot be adequately controlled.
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Regarding the second problem, when the high-dimensional input data is ar-
ranged on a low-dimensional map by the SOM, there is not always one cluster
per unit. The GHSOM method, however, creates the lower hierarchical map
for each unit as one cluster, even if the cluster corresponds to numerous units.
Thus, the clusters in the hierarchical structure formed by the GHSOM method
are excessively subdivided when new sub-maps are constructed due to the ex-
cessively detailed data representation in the map.

3 Category utility

The primary cause of the problems with the GHSOM method described in
Section 2 is that the quantization error, which serves as the measure of the
quality of maps, is not suitable for evaluating the quality of input-data alloca-
tion. Therefore, an alternative measure is necessary for preparing appropriate
maps.

Such measures have been developed in the field of conceptual clustering (Michal-
ski et al., 1983), as mentioned in the Introduction. They can be used to esti-
mate the meanings of clusters. The conventional conceptual methods (Fisher,
1987; Gennari et al., 1989; Li and Biswas, 2002; Scanlan et al., 2006, 2008;
Godoy and Amandi, 2006; Chien et al., 2009), however, cannot learn the topol-
ogy among the sub-clusters in a cluster, whereas the GHSOM method can.

Of the various measures for clustering developed in the field of conceptual
clustering, we use the category utility (CU) one (Corter and Gluck, 1992;
Gennari et al., 1989) for the three reasons.

• It is based on the results of psychological experiments.
• It is effective as a measure for clustering.
• It is widely used for various applications.

The CU is a normative information theoretic measure developed by Corter and
Gluck Corter and Gluck (1992) to predict the basic level in human classifica-
tion hierarchies. The basic level was defined from psychological experiments
by Rosch et al. Rosch et al. (1976) as the level at which categories are most
distinctive from one another; basic level categories (e.g., apple) are generally
identified more quickly than either more general (e.g., fruit) or more specific
(e.g., golden delicious apple) categories during object recognition. The the-
ory of the basic level is based on a principle called cognitive economy: people
attempt to obtain the maximum information with the least cognitive effort
(Ungerer and Schmid, 1996). Corter and Gluck Corter and Gluck (1992) con-
ducted numerical experiments to show that the CU is maximum at the basic
level. It is also indicated that the CU is equivalent to the mutual informa-
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tion (Corter and Gluck, 1992). When the value of CU is large, the category
can be considered to be a good cluster (Corter and Gluck, 1992). Moreover,
the measure is used for various applications such as database design (Ionnidis
et al., 1992), semantic web discovery (Clerkin et al., 2001), and sentence clas-
sification (Theodorakis et al., 2004). The CU is thus a suitable measure for
estimating the quality of clustering.

The value of the CU for a category ck is given by

CU(ck) = P (ck)
∑

i

∑
j

{P (ai = fij |ck)
2 − P (ai = fij)

2}, (2)

where ai is the i-th attribute, fij is the j-th feature value of ai, and P (·) is
a probability function. Namely, P (ai = fij) is the unconditional probability
of attribute ai taking on value fij , and P (ai = fij |ck) is the conditional prob-
ability of ai = fij given category ck. We derive the following equation from
Eq. (2) and use it to compare the probability of a category with that of the
immediate upper category.

CUnominal(ck) = P (ck)
∑

i

∑
j

{P (ai = fij |ck)
2 − P (ai = fij |cl)

2}, (3)

where cl is the immediate upper category of ck.

The COBWEB system for hierarchical conceptual clustering (Fisher, 1987)
uses the CU measure as the criterion function to represent concepts probabilis-
tically in a hierarchical tree structure. COBWEB is incremental and compu-
tationally economical and thus can be flexibly applied in a variety of domains.
However, the clustering tree structure obtained with COBWEB strongly de-
pends on the instance input order. Thus, the clustering structure cannot ex-
cellently preserve the topology of input data.

The CU measure in the original COBWEB (Fisher, 1987) can handle only
nominal data. In the CLASSIT (Gennari et al., 1989) method, the extended
version of COBWEB, a modified CU that matches the numerical data is used.
For a set of numeric feature values, CU is defined as

CUnumeric(ck) =
P (ck)

2
√

π

∑
i

{
1

σik
− 1

σil

}
, (4)

where σik and σil are the standard deviation of attribute i in category k and
in immediate upper category l, respectively. To overcome the problem that
the standard deviations are zero, a limit parameter, acuity, was introduced to
specify the minimum value for the standard deviations. It corresponds to the
lower limit on our perception ability in psychophysics.
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The CU measure was extended in the COBWEB/3 (Li and Biswas, 2002) to
handle a mix of nominal and numeric feature values. The overall CU is the
sum of the nominal and numeric CU:

CU(ck) = CUnominal(ck) + CUnumeric(ck). (5)

The complete expression for category utility is

MCU =
N∑

k=1

CU(ck)

N
, (6)

where N is the number of categories. The division lets one compare different
size clusterings. In our method, a cluster (as a unit) obtained by using a SOM
is considered to be in category ck above. That is, the category labels do not
need; our proposed method is one of unsupervised learning methods.

4 Proposed method

Our proposed method uses the category utility (CU) measure (Corter and
Gluck, 1992) instead of the quantization error used in the GHSOM method
(Dittenbach et al., 2002; Rauber et al., 2002). Its basic principle is that the
growth and unification processes are appropriately and autonomously con-
trolled by the CU. Note that category ck described in Sec. 3 is the cluster in
the following procedure. The procedure of the proposed method is as follows.

(1) Create the 0-th unit in layer 0 (the upper most layer), and define this
unit as parent unit u.

(2) Create a new sub-map, m, in the next lower layer corresponding to parent
unit u; give it an initial size and set expansion number n to 0.

(3) Train map m with a random order of inputs per period for T periods
in accordance with the standard SOM training procedure using a linear
decreasing learning rate (initial learning rate is α0) and Gaussian neigh-
borhood function.

(4) After the training, assign each input to the unit, i.e., cluster with the
smallest Euclidean distance from the input.

(5) Calculate the category utility CUi of each unit, and calculate the mean
category utility MCUm

n .
(6) Unify clusters on the basis of the category utility.
(7) Recalculate the category utility of each cluster, and recalculate the mean

category utility.
(8) If MCUm

n−1 ≥ MCUm
n , go to step 10.

(9) Expand map m on the basis of the error unit with the minimum category
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utility (n := n + 1), and go to step 3.
(10) If MCUm

n−1 ≥ τh, set each i-th unit in map m to parent unit u and go to
step 2, where τh is the parameter that controls the creation of the lower
hierarchical maps.

This differs from the conventional GHSOM method in several areas.

• The control process used for expanding the map.
• The criterion for selecting the unit insertion location on the expanded map.
• The criterion for stopping the expansion of the hierarchical structure.
• The process of unifying clusters.

Remarkably, each of these differences is based on the CU described in Section
3.

Regarding the first difference, the process controlling the map expansion de-
pends on the use of the CU instead of the quantization error. Figure 1 illus-
trates the differences in map expansion between the control processes used
in the conventional method (a) and in the proposed method (b). With the
conventional GHSOM method (Fig. 1 (a)), the control process is executed
until the mean quantization error, MQEn, of the n-th expansion map is less
than the product of parameter τm and quantization error qeu, where τm is the
parameter that controls the size of the map, and qeu is the quantization error
of the corresponding (parent) unit in the upper layer. Since the quantization
error measure cannot be used to evaluate the quality of clusters in the present
map, the value of the measure for the present map is compared with that of the
corresponding unit in the upper layer. Additionally, users of the conventional
GHSOM method must provide the proper value of τm. With the proposed
method (Fig. 1 (b)), on the other hand, the control process is executed as
long as the mean CU, MCUn, of the n-th expansion map is more than the
mean CU, MCUn+1, of the next map. Thus, map expansion is stopped at the
maximum value of the CU measure. Since the CU measure can be used to
evaluate the quality of clusters in the present map, the value of the measure
for the present map is compared with that for the next expansion map. Note
that users of the proposed method do not face the difficult task of setting up
an appropriate parameter, such as parameter τm in the conventional GHSOM
method.

Regarding the second difference, the CU is used instead of the quantization
error to choose the locations for unit insertion during the expansion process. In
the conventional GHSOM method, the insertion location is the place between
the error unit and the dissimilar unit, as shown in Fig. 2. The error unit is
the unit with the highest quantization error, and the dissimilar unit is the
nearest neighboring unit with the maximum Euclidean distance between its
reference vector and the reference vector of the error unit. To obtain a smooth
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Fig. 1. Difference in map expansion between control processes for (a) GHSOM
method (mean quantization error) and (b) proposed method (category utility).

positioning of the newly added units in the input space, their reference vectors
are initialized as the average of the reference vectors of their nearest neighbors.
In the proposed method, the error unit is selected as the unit with the lowest
CU. The other processes are the same as those of the conventional method.
The error unit with the lowest CU has the lowest quality clustering while that
with the highest quantization error does not entirely has the lowest quality
clustering. Thus, using CU for inserting units works better for clustering than
using the quantization error.

Regarding the third difference, the CU is used instead of the quantization
error to determine when to stop expanding the hierarchical structure. In the
conventional GHSOM method, the global hierarchical expansion is executed
until the mean quantization error, MQEm, of map m is less than the prod-
uct of parameter τh and quantization error qe0 of the 0-th unit in layer 0
(the uppermost layer). In the proposed method, it is executed until the mean
CU, MCUm, of map m is less than τh. The users of both methods must pro-
vide the value of τh. However, that in the proposed method is the threshold
value of the category utility while that in the conventional GHSOM method
is the ratio used to compare the values of two quantization errors; the τh in
the proposed method represents the quality of clustering while that in the
conventional GHSOM has no explicit meaning. That is, it is easier for users
of the proposed method to provide a value for τh than it is for users of the
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Fig. 2. Insertion of units. (a) a row. (b) a column.

conventional GHSOM method.

Regarding the fourth difference, the unification of clusters is newly added. To
overcome the problem that clusters in the hierarchical structure for input data
are excessively subdivided, as described in Section 2, the hierarchical growth
process is optimized by unifying clusters on the basis of the category utility
after training each map. If a single cluster is represented by numerous units,
i.e., numerous clusters, it should be one cluster in this unification process. A
cluster, however, is occasionally excessively subdivided by learning in SOM.
Thus, the unification process is necessary for improving clustering quality. The
procedure for unifying clusters is illustrated in Fig. 3. First, the cluster with
the lowest CUi is selected as a merge candidate cluster. Second, an attempt
is made to find the best candidate cluster for unification from the four neigh-
boring clusters. The best candidate is the cluster for which the CU of the sum
of the cluster and the merge candidate cluster is the maximum among the
four neighboring clusters. Third, if the global mean CU, MCUm, of map m
increases after trying to unify the clusters, the unification of clusters is ac-
cepted, and the procedure returns to the first step. Otherwise, unification is
terminated. Since a merge candidate cluster on a map has a lower CU than
those of the other clusters. We simply need to recursively find the cluster with
the minimum CU to unify clusters. This unification process prevents excessive
cluster subdividing. This unification process is effective for the method with
the CU, but not for that with the quantization error, because the quantization
error monotonically decreases with an increasing number of units, as discussed
in Sec. 2.2. In the conventional GHSOM method with the unification process,
in contrast, the quantization error increases due to the decreasing number of
units resulting from the unification process.

These differences lead to several positive effects.

10



Merge candidate cluster

Best candidate cluster

for unification

Unified cluster

Nearest  neighboring

cluster

Fig. 3. Unifying clusters.

• The expansion process is stopped appropriately without having to set a
parameter.

• Unit insertion using CU works better for clustering than that using the
quantization error.

• It is easier to provide τh with the proposed method than with the conven-
tional GHSOM method.

• The unification prevents excessive subdividing of clusters.

5 Evaluation

To evaluate the proposed method in comparison with other methods, we
conducted computer experiments. The proposed method is denoted as CUU-
GHSOM, which corresponds to the GHSOM method using the category utility
(CU) measure with cluster unification. CU-GHSOM is the GHSOM method
using the category utility (CU) measure without unification. The original con-
ventional GHSOM method (Dittenbach et al., 2002; Rauber et al., 2002) is
denoted as QE-GHSOM, namely, the GHSOM method using the quantiza-
tion error. When we refer to a common characteristic of these methods, it
is denoted as simply GHSOM. Comparison of the results with CU-GHSOM
and with CUU-GHSOM revealed the effects of cluster unification. We did
not use QE-GHSOM with cluster unification, because it is not effective, as
described in Section 4. We additionally compared these methods with the
COBWEB/3 method (Li and Biswas, 2002) because it uses the CU measure.
In summary, the experimentally investigated methods were (1) COBWEB/3,
(2) QE-GHSOM, (3) CU-GHSOM, and (4) CUU-GHSOM.

To evaluate the methods, we used two kinds of data: 1) artificially generated
data, with nominal and numeric feature values and 2) real data, the zoo data
obtained from the UCI machine learning database (Asuncion and Newman,
2007). The artificial data was quantitatively evaluated while the real data was
qualitatively evaluated, because there is seldom any real hierarchical cluster-
ing problem with its hierarchical answer. Moreover, even if there were such
a problem, the number of instances of real data is very small. For example,
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the number of instances for fruit hierarchical data, as shown by Tversky and
Hemenway Tversky and Hemenway (1984), is 6. Therefore, we constructed
an artificial hierarchical input data structure to quantitatively evaluate the
results for any type of hierarchical cluster structure data. On the other hand,
for the real data, the zoo data, we present illustrative results generated by
the GHSOM methods in order to evaluate qualitatively. In the following ex-
periments, since the normalized inputs for SOMs are recommended in order
to emphasize the differences (Kohonen, 2001), we normalized inputs in each
numeric attribute for SOM learning. However, the inputs for CU measure
were not normalized so that the evaluations of the clusterings were correctly
executed.

5.1 Artificial data

We first describe the procedure used for generating the artificial data. Then,
we present the indexes defined for quantitatively evaluating the results. We
next explain the experimental method. Finally, we present the results and
discuss them.

5.1.1 Data description

We generated two different types of artificial data, as shown in Table 1: 1)
nominal and 2) numeric. For the nominal data, a cluster consists of several
attributes. For simplicity, we used binary data as the nominal data. When a
cluster includes an instance, at least one of the feature values of the attributes
is true (1); all other feature values are randomly true (1) or false (0). If a
cluster does not include an instance, the feature values are always false (0).
For the numeric data, several categories are included in an attribute. The
feature values are generated by sampling normal distributions with different
means and standard deviations for each cluster. The limit parameter, acuity,
was set to 1 in each case. The random values in the nominal and numeric data
acted as noise.

5.1.2 Evaluation indexes

Accuracy is often used as an evaluation index for non-hierarchical clustering
(Huang and Ng, 1999; Devaney and Ram, 1997). Using only accuracy index,
however, has a problem for hierarchical clustering as the following considera-
tion.

Then, we defined two indexes for quantitatively evaluating performance: ac-
curacy and cohesion. Accuracy is defined as the average probability of the
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Table 1
Characteristics of artificial data.

Nominal Numeric

Number of instances 168 189

Number of attributes 114 3

Layer 1: Data type nominal numeric

Number of clusters 2 3

Number of attributes per cluster 3 —

Number of clusters per attribute — 3

distribution N(µ = 50, σ = 2)

N(µ = 100, σ = 2)

N(µ = 150, σ = 2)

Layer 2: Data type nominal numeric

Number of clusters 6 3

Number of attributes per cluster 3 —

Number of clusters per attribute — 3

distribution N(µ = 10, σ = 2)

N(µ = 40, σ = 2)

N(µ = 70, σ = 2)

Layer 3: Data type nominal numeric

Number of clusters 2 3

Number of attributes per cluster 3 —

Number of clusters per attribute — 3

distribution N(µ = 10, σ = 2)

N(µ = 30, σ = 2)

N(µ = 50, σ = 2)

correct classification at each level, whereas the probability of correct classifi-
cation means the ratio of the number of instances, which exceeds the majority
in a unit, of a cluster to the number of instances in the unit. Cohesion is de-
fined as the average of the reciprocals of the numbers of classifications from
one cluster of the original input data. High accuracy means that the data were
accurately classified, whereas low accuracy means that the classified data in-
clude other data from other clusters. High cohesion means that the data in one
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cluster of the original input data were classified into a single group, whereas
low cohesion means that the data in one cluster were classified into numerous
groups.

It is desirable for both indexes to be high, but there is usually a trade-off
between accuracy and cohesion at the limits of clustering. In extreme exam-
ples, if each instance is classified into one group, accuracy is 1, and cohesion
approaches 0; if all instances are classified into one group, accuracy is 0, and
cohesion is 1. Therefore, we defined a new index, cluster goodness. Cluster
goodness is defined as the harmonic average of accuracy and cohesion.

5.1.3 Method

We conducted 100 runs per parameter combination with the input data in
random order for each method and averaged the evaluation indexes of the
results. Whereas the COBWEB/3 method has no parameters that users assign,
the parameters in the GHSOM methods were assigned as follows. The initial
size of the map was 2 × 2. The number of periods for a training run, T , was
set to 25. Parameter σ, which determines the neighborhood distance, was set
to 1. Parameter τh, which controls the hierarchical growth, was set to 0.003 to
ensure that the entire hierarchical structure was obtained. These parameters
were kept constant for simplicity.

Two additional parameters were variable because they are thought to greatly
affect performance. Initial learning rate α0 was varied from 0.1 to 0.9 in steps
of 0.1 Parameter τm, which controls the size of the map, was varied from 0.1
to 0.9 in steps of 0.1 (only for QE-GHSOM).

5.1.4 Results and discussion

The results for the nominal data and numeric data are shown in Tables 2 and
3, respectively. For the GHSOM methods, we show the results at the best,
worst, and average of cluster goodness, respectively. The results obtained by
the proposed CUU-GHSOM method for each type of input data were the
highest in terms of quality for the best, worst, and average of the index. They
were also the highest for the other input data with the other settings (number
of instances, depth of hierarchy, number of clusters, and number of attributes),
although they are not shown here.

Note that the performance of CUU-GHSOM and CU-GHSOM did not depend
on the variable parameter, α0, whereas that of QE-GHSOM strongly depended
on the map expansion parameter, τm. This means that the proposed method
is easier to use than the QE-GHSOM method, which requires much effort to
assign the appropriate parameters. Moreover, the indexes of CUU-GHSOM
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were better than those of CU-GHSOM, especially for the numeric data, as
shown in Table 3. This indicates the beneficial effect of the unification process.
The poor performance of COBWEB is attributed to the fact that COBWEB
strongly depends on the instance input order.

Here, we discuss the computational cost of adding the CU and the unification
process. Surely, the computational cost of our method increases. However,
the cost is not a problem for the user because CUU-GHSOM requires no
effort to assign the appropriate parameters. The users of CUU-GHSOM can
obtain a fine result by one-shot while the users of QE-GHSOM must execute
it repeatedly with tuning of parameters to obtain a fine result. On the other
hand, the users of COBWEB do not need tuning of parameters. However, the
results of COBWEB are worse than those of our method.
Table 2
Comparison of results of 100 runs for artificial nominal data.

Method τm α0 Accuracy Cohesion Cluster Goodness

COBWEB/3 — — — 0.771 0.752 0.762

best 0.9 0.3 0.673 0.854 0.735

QE-GHSOM worst 0.1 0.8 0.938 0.180 0.302

average — — 0.764 0.613 0.616

best — 0.1 0.860 0.829 0.844

CU-GHSOM worst — 0.8 0.821 0.820 0.820

average — — 0.837 0.829 0.833

best — 0.1 0.887 0.894 0.891

CUU-GHSOM worst — 0.9 0.874 0.884 0.879

average — — 0.886 0.886 0.886

5.2 Real data

Our evaluation using real data focused on the illustrative final results gener-
ated by CUU-GHSOM. Some results for the other GHSOM methods are given
to illustrate the differences between the results generated by CUU-GHSOM
and those by the other GHSOM methods.

5.2.1 Data description

The zoo data was obtained from the UCI machine learning repository (Asun-
cion and Newman, 2007) contained a mixture of nominal and numeric at-
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Table 3
Comparison of results of 100 runs for artificial numeric data.

Method τm α0 Accuracy Cohesion Cluster Goodness

COBWEB/3 — — — 0.616 0.374 0.466

best 0.2 0.1 0.854 0.544 0.664

QE-GHSOM worst 0.1 0.3 0.920 0.311 0.465

average — — 0.771 0.534 0.622

best — 0.4 0.951 0.471 0.630

CU-GHSOM worst — 0.2 0.950 0.441 0.603

average — — 0.948 0.456 0.616

best — 0.1 0.977 0.939 0.958

CUU-GHSOM worst — 0.9 0.951 0.840 0.892

average — — 0.949 0.890 0.918

tributes. The cluster labels (types in the zoo data) were not used as an at-
tribute in the clustering process for unsupervised learning. Note that we can-
not evaluate the result quantitatively, since this data set has no hierarchical
answer. The zoo data consists of 101 instances defined by 16 attributes: hair,
feathers, eggs, milk, airborne, aquatic, predator, toothed, backbone, breathes,
venomous, fins, legs, tail, domestic, and catsize. The attribute legs has only
numeric feature values while the other attributes have Boolean (nominal) fea-
ture values. The limit parameter, acuity, was set to 1 for the legs attribute.
The initial size of the map was 2× 2. The number of times for a training run,
T , was set to 25. Parameter σ, which determines the neighborhood distance,
was set to 1.

5.2.2 Results and discussion

Examples (up to the second layer) of final clustering results generated by CUU-
GHSOM with α0 = 0.1 and τh = 0.8 for the zoo data are shown in Figs. 4-5.
The other clustering results with different learning rate parameters obtained
by the CUU-GHSOM method were very similar to those presented here. The
display style is based on that in the software package for the conventional
GHSOM method (Rauber, 2007). The map is displayed as a table, and each cell
in the table is a unit, i.e., a cluster. The value of CU, the attribute names, and
their average values (plus the standard deviation for the numeric attribute)
are shown on the left, and the names of the instances clustered in the cell are
displayed on the right. An alphabetic character (a to g) representing the type
of zoo is shown at the head of each instance name. This type was not used in
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learning process. The shading indicates the attributes that had a mean feature
value at least 0.2 greater than that in the upper (parent) unit. No instances
were clustered in the units marked with ‘*****’. Hereafter, the unit (cluster)
location is indicated as (x, y), where x represents horizontal position and y
represents vertical position.

Cluster (0,0) in the first layer in Fig. 4 is distinguished by high average values
for hair and toothed, and a low value for eggs, and so on, corresponding
to mammalian. Cluster (0,1) is distinguished by low average values for hair
and legs, and a high value for eggs, aquatic, and so on, corresponding to
nonmammalian which have few legs, for example, reptiles, fish, etc. Cluster
(1,1) is distinguished by low average values for hair, milk, toothed, and a high
average for eggs, and so on, corresponding to non-toothed nonmammalian, for
example, birds, insects, etc. Note that similar clusters are located more closely
to each other than distinct ones; the topology of the input data is embedded
into the map on the basis of the ability of the SOM. However, the conventional
conceptual methods such as the COBWEB (Fisher, 1987), CLASSIT (Gennari
et al., 1989), SBAC (Li and Biswas, 2002), DynamicWeb (Scanlan et al., 2006,
2008), and WebDCC (Godoy and Amandi, 2006) cannot excellently preserve
the topology of the input data. For this reason, we do not show the final
clustering results generated by COBWEB/3. In the second layer, for example,
the major difference between cluster (0,0) and cluster (1,1) at the sub-map
level, as shown in Fig. 5, is in the average value for predator; the instances in
cluster (0,0) are seldom predatory mammalian while those in cluster (1,1) are
predatory mammalian.

Finally, we consider the differences between the CUU-GHSOM (proposed GH-
SOM) results above and some of the CU-GHSOM (GHSOM using CU but
without unification process) and QE-GHSOM (original GHSOM using quan-
tization error) results. Figure 6 shows a map of the final results generated by
CU-GHSOM with the same α0 and τh as used for CUU-GHSOM. This map
(MCU = 0.266739) is more subdivided than the map (MCU = 0.380885)
(Fig. 5) generated by CUU-GHSOM, because the unification process is not
executed for CU-GHSOM, so the map is excessively subdivided in the early
stages of the expansion process. In the case without the unification process,
knowledge on predatory mammalian (Fig. 6 compared with Fig. 5) is divided,
that is, we hard to understand the knowledge on predatory mammalian. This
shows that the unification process is effective. Figure 7 shows a map of the
final results generated by QE-GHSOM for τm = 0.1 and the same α0 and τh

as used for CUU-GHSOM and CU-GHSOM. This map is even more subdi-
vided than the CUU-GHSOM map (Fig. 4), because the expansion process for
QE-GHSOM greatly depends on τm. In other words, the GHSOM using quanti-
zation error (QE-GHSOM) does not appropriately stop the expansion process
while the GHSOM using CU (CUU-GHSOM) can appropriately stop it. In the
case of QE-GHSOM (original GHSOM), there is the case that knowledge such
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as mammalian (Fig. 7 compared with Fig. 4) is not obtained. Of course, the
results for QE-GHSOM with an appropriate τm may be similar to those for
CUU-GHSOM, but finding the appropriate value is a time-consuming process.
Note that users of the CUU-GHSOM need not to repeat setting the parameter
and checking the results. This shows that using CU instead of quantization
error is effective. In summary, users of the proposed method CUU-GHSOM
do not face these problems because they can automatically construct an ap-
propriate hierarchical knowledge representation.

6 Conclusion

Our proposed growing hierarchical self-organizing map (GHSOM) method us-
ing the category utility as an evaluation measure with cluster unification au-
tomatically constructs an appropriate hierarchical and topological knowledge
representation for high-dimensional input data through unsupervised learning.
Evaluation using computer experiments showed that our proposed method is
easier to use and more effective than the conventional GHSOM method us-
ing the quantization error as an evaluation measure and the GHSOM method
using the category utility measure without unification.

More verification through experiments and evaluations for various data is still
remained. Especially, we will focus on knowledge acquisition from various real
data as a future work.
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Fig. 4. Example of final clustering results generated by CUU-GHSOM: map in first
layer.
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Fig. 5. Example of final clustering results generated by CUU-GHSOM: map in
second layer for parent unit (0,0) in first layer (Fig. 4).
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Fig. 6. Example of final result generated by CU-GHSOM (using CU without unifi-
cation process): map in second layer for parent unit (0,0) in first layer (not shown
but similar to that in Fig. 4).
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legs ave.= 2.00 

tail ave.= 1.00 

domestic ave.= 0.00 

catsize ave.= 1.00 

b_penguin 

 

QE = 13.927314  

 

hair ave.= 0.00 

feathers ave.= 0.00 

eggs ave.= 1.00 

milk ave.= 0.00 

airborne ave.= 0.00 

aquatic ave.= 1.00 

predator ave.= 0.69 

toothed ave.= 1.00 

backbone ave.= 1.00 

breathes ave.= 0.00 

venomous ave.= 0.08 

fins ave.= 1.00 

legs ave.= 0.00 

tail ave.= 1.00 

domestic ave.= 0.08 

catsize ave.= 0.31 

d_bass 

d_carp 

d_catfish 

d_chub 

d_dogfish 

d_haddock 

d_herring 

d_pike 

d_piranha 

d_seahorse 

d_sole 

d_stingray 

d_tuna 

 

Fig. 7. Example of final result generated by QE-GHSOM (using quantization error):
the map in first layer.
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