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PAPER

Firing Patterns Depending on Model Neurons

Kazushi MURAKOSHI† and Kiyohiko NAKAMURA†, Regular Members

SUMMARY An electrophysiological experiment showed
that spike timing was precise to less than one millisecond. This
result indicates the possibility in the precise time codings. For a
high accurate time coding, reconsideration of a neural mechanism
which decides firing time is required. From such viewpoint, we
quantitatively examined change in firing time with interference
between two synaptic inputs through Hodgkin-Huxley (HH) and
integrate-and-fire (IF) model neurons. The precise firing times in
the HH model neuron were extremely different from those in the
IF model neuron. In this paper, the relations of input intensity to
firing time are investigated in the other more two pulse generation
models: Morris-Lecar (ML) and FitzHugh-Nagumo (FN) model.
The result of the ML model in a certain parameter set (type-I)
exhibited monotone decreasing like that of the IF model while
the result of the ML model in the otter parameter set (type-II)
exhibited non-monotone decreasing like that of the HH model.
The result of the FN model exhibited non-monotone decreasing
like the HH model despite its qualitativeness. Next the firing
patterns in the four model neurons on a model of V1 (primary
visual area) and LGN (lateral geniculate nucleus) with circular
and mutual excitatory connections are investigated to show how
dependent on model neurons the firing patterns are. The spikes
in the HH, the ML type-II, and the FN model neurons elicited
synchronous oscillations while the spikes in the IF and the ML
type-I model neurons did not; the firing patterns dramatically
changed with the dependence on the model neurons.
key words: Hodgkin-Huxley model, integrate-and-fire model,
Morris-Lecar model, FitzHugh-Nagumo model, oscillatory syn-
chrony

1. Introduction

An electrophysiological experiment showed that spike
timing was precise to less than one millisecond [1]. This
result indicates the possibility in the precise time cod-
ings. It is expected that the information processing
ability is improved in comparison with average firing
rate coding, if the spike time coding is possible [2]. For
a high accurate time coding, reconsideration of a neural
mechanism which decides firing time is required.

One of the simplest spike time coding would be
spiking time from the beginning of input time. The
relation of the intensity of single input to the firing
time is monotone decreasing: a strong input generates
a spike faster than a weak one does [3]–[5]. This re-
lation will hold even when the input is from multiple
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spikes, as long as the spikes are almost simultaneous.
In actuality, however, numerous synaptic inputs arriv-
ing at various times are gathered into a single neuron.
In such a situation it is not easy to forecast firing time.

From such a viewpoint, we quantitatively exam-
ined change in firing time with interference between
two synaptic inputs through Hodgkin-Huxley (HH) and
integrate-and-fire (IF) model neurons [6]. The precise
firing times in the HH model neuron were extremely
different from those in the IF model neuron.

This paper aims to elucidate precise firing patterns
of model neurons furthermore. First this paper investi-
gates firing times by interference between two synaptic
inputs through the two more well-studied spiking neu-
ron models: Morris-Lecar (ML) and FitzHugh-Nagumo
(FN) model neurons. The ML model is formulated to
describe a variety of oscillation while the FN model is
derived by reducing the parameter of the HH model.

In our previous work, the precise firing times in the
HH model neuron was extremely different from those in
the IF model. It is expected that the firing patterns of
neural circuits in the HH like model also differs those in
the IF like model. Second the firing patterns in the four
model neurons in an example of a connective model is
investigated to show how dependent on model neurons
the firing patterns are.

2. Firing Time by Interference between Spikes

In four model neurons, we investigate the firing time
by interference between two synaptic inputs: fixed base
input and control input which is varied with intensity
and relative input time from the beginning of the base
input. Here firing time is defined as the time from the
beginning of the base input to the time the membrane
potential V exceeds the threshold.

Our previous work showed that firing time is not
a monotonically decreasing function of the previous in-
put intensity of two successive input especially in weak
positive input one in the HH model [6]. In this paper,
therefore, we use excitatory input only.

All differential equations were solved with a
fourth-order Runge-Kutta method with a time step of
0.001ms. The base input in each model neuron is taken
from near the center of the curve of firing time by single
synaptic input to investigate property of firing in each
model neuron.
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Table 1 Hodgkin-Huxley variables and parameters used in the
simulations [7].

Iext(t) : external current density [µA/cm2]
(outward current positive)

V : membrane potential [mV]
m : sodium activation (0 < m < 1)

initial value m0 = 0.042
h : sodium inactivation (0 < h < 1)

initial value h0 = 0.608
n : potassium activation (0 < n < 1)

initial value n0 = 0.315
t : time [ms]

Cm : membrane capacity per unit area [1 µF/cm2]
ḡNa : maximal sodium conductance [120 mS/cm2]
ḡK : maximal potassium conductance [36.0 mS/cm2]
ḡl : maximal leak conductance [0.3 mS/cm2]

VNa : equilibrium sodium potential [55.0 mV]
VK : equilibrium potassium potential [−72.0 mV]
Vl : equilibrium leak potential [−49.387 mV]
Θ : temperature [15 ◦C]
φ : temperature-scaling factor

α, β : rate constant [ms−1]

αm =
0.1(−35.0−V )

exp
(−35.0−V

10.0

)
−1.0

(αm = 1.0 if V = −35.0)

βm = 4.0 exp
(
− 60.0+V

18.0

)
αh = 0.07 exp

(
− 60.0+V

20.0

)
βh = 1.0

exp
(−30.0−V

10.0

)
+1.0

αn =
0.01(−50.0−V )

exp
(−50.0−V

10.0

)
−1.0

(αn = 0.1 if V = −50.0)

βn = 0.125 exp
(
− 60.0+V

80.0

)
φ = 3.0

(Θ−6.3)
10.0

2.1 Hodgkin-Huxley Model

Hodgkin-Huxley model [7] consists of four differential
equations:

dV

dt
=

1
Cm

[Iext(t) − ḡNam3h(V − VNa)

− ḡKn4(V − VK) −ḡl(V − Vl)] , (1)
dm

dt
= φ [αm(1− m)− βmm] , (2)

dh

dt
= φ [αh(1− h)− βhh] , (3)

dn

dt
= φ [αn(1− n)− βnn] . (4)

The variables and parameters are listed in Table 1.
An external current stimulus Iext(t) is expressed by

a time-varying synaptic conductance gsyn(t)[mS/cm2],
which is represented by an α function [8], [9]:

gsyni(t) =

{
Ai

t−tf
i

τ2
i

exp(− t−tf
i

τi
) if t ≥ tfi

0 if t < tfi

,(5)

Iext(t) = −
∑

i

gsyni(t)(V − Vrev) (6)

where tfi is the arrival time of i-th spike and τi is the

(a)

(b)

Fig. 1 Relations between input and firing time. (a) Relation of
input intensity to firing time by interference between two inputs.
The base input intensity is 0.5mS/cm2. (b) Relation of relative
input time to firing time by interference between two inputs. At
0.35mS/cm2 input intensity, the neuron also fires before time
zero when the relative time is less than −3ms. The reason why
the curves are interrupted is that neuron cannot fire for interfer-
ence by previous synaptic input or that neuron previously fires
by the control input.

time giving the maximum conductance Ai. We simply
set all τi = 1.5ms as time course of AMPA excitatory
receptor. Vrev is the reversal potential: Vrev = 0mV for
an excitatory input. The neuron fires when its mem-
brane potential V exceeds the threshold, −45mV.

The results are shown in Figs. 1 (a) and (b). Figure
1 (a) shows firing time as a function of control input
intensity for several discrete relative input times. It is
noteworthy that the firing time is lengthened despite
excitatory control input when the relative input time is
a certain negative.

Figure 1 (b) shows firing time for relative input
time in several discrete intensities of control input.
These results indicate that firing time can be longer or
shorter depending on relative input time between two
inputs of fixed intensity by interference between them.

2.2 Integrate-and-Fire Model

The differential equation for membrane potential V in
integrate-and-fire model [10] is

τm
dV

dt
= rmIext(t)− V + V0. (7)

The variables and parameters are listed in Table 2.
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Table 2 Integrate-and-fire variables used in the simulations.

Iext(t) : external current density [µA/cm2]
rm : membrane surface resistance [1 kΩcm2]
V : membrane potential [mV]

resting potential V0 = −60
t : time [ms]

τm : membrane time constant [5ms]

(a)

(b)

Fig. 2 Relations between input and firing time in the case of
the integrate-and-fire model. (a) Relation of input intensity to
firing time by interference between two inputs. The base input
intensity 4.0mS/cm2. (b) Relation of relative input time to firing
time by interference between two inputs. At 3.0mS/cm2 input
intensity, the neuron also fires before time zero when relative time
is less than −3ms.

The neuron fires when its membrane potential ex-
ceeds the threshold (−45mV), and the membrane po-
tential decreases (−70mV) after firing. The external
input current Iext(t) is the same one given by Eq. (5)
in the HH model.

Figure 2 (a) shows the relation of control input in-
tensity to firing time for some fixed relative input times.
All relations are monotone decreasing. These results
differ from the results obtained using the HH model.
Figure 2 (b) shows the relation of relative input time
to firing time for some fixed control input intensities.
Unlike what was seen with the HH model, the firing
times for the positive control input are always short-
ened. When the intensity is 3.0mS/cm2, however, the
firing time is long because of the decrease to −70mV
after the previous firing.

Table 3 Morris-Lecar variables used in the simulations [11],
[13].

Iext(t) : external current density [µA/cm2]
V : membrane potential [mV]
N : fraction of open potassium channels

(0 < N < 1)
t : time [ms]

Cm : membrane capacity per unit area [µF/cm2]
ḡCa : maximal calcium conductance [mS/cm2]
ḡK : maximal potassium conductance [mS/cm2]
ḡl : maximal leak conductance [mS/cm2]

VCa : equilibrium calcium potential [mV]
VK : equilibrium potassium potential [mV]
Vl : equilibrium leak potential [mV]
V1 : potential at which N∞ = 0.5mV
V2 : reciprocal of slope of M∞
V3 : potential at which N∞ = 0.5mV
V4 : reciprocal of slope of N∞

M∞(V ) = 0.5(1 + tanh((V − V1)/V2))
N∞(V ) = 0.5(1 + tanh((V − V3)/V4))

τN = 1
φN cosh((V −V3)/2V4))

Table 4 Morris-Lecar parameters used in the simulations [11],
[13].

Variable type-I type-II
Cm [µF/cm2] 5.0 5.0
ḡCa [mS/cm2] 4.0 4.4
ḡK [mS/cm2] 8.0 8.0
ḡL [mS/cm2] 2.0 2.0

VCa [mV] 120.0 120.0
VK [mV] -84.0 -84.0
VL [mV] -60.0 -60.0
V1 [mV] -1.2 -1.2
V2 [mV] 18.0 18.0
V3 [mV] 12.0 0.0
V4 [mV] 17.4 36.0

φN 0.8 0.6

2.3 Morris-Lecar Model

Morris et al. [11] formulated a model intended to ex-
plain the varied oscillatory and bistable behavior seen
in experiments with barnacle muscle fiber. The Morris-
Lecar (ML) model is utilized for a single neuronal os-
cillatory phenomenon [11]–[13]. The ML model is ex-
pressed by following three differential equations:

dV

dt
=

1
Cm

[Iext(t) − ḡCaM∞(V )(V − VCa)

−ḡKN(V − VK) −ḡL(V − VL)] , (8)
dN

dt
=

N∞(V )− N

τN
. (9)

The variables and parameters of the modified ML mod-
els (type-I and type-II) [12], [13] are listed in Tables 3
and 4. The classification was proposed by Hodgkin [3],
who found arbitrarily low response frequencies and
spike latencies (type-I) and a narrow range of responses
with no spike delay (type-II). The neuron fires when its
membrane potential exceeds the threshold (−12mV).
The external input current Iext(t) is the same one given
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(a)

(b)

Fig. 3 Relation of input intensity to firing time by interference
in the case of the Morris-Lecar type-I model. (a) Relation of
input intensity to firing time by interference between two inputs.
The base input intensity is 18.0mS/cm2. (b) Relation of relative
input time to firing time by interference between two inputs. At
15.0mS/cm2 input intensity, the neuron also fires before time
zero when relative time is less than −4ms.

by Eq. (5) in the HH model.
Figures 3 (a) and 4 (a) shows the results of the rela-

tions of control input intensity to firing time for the ML
type-I and type-II model, respectively. The relations of
the control input intensity to the firing time for the
type-II model are not monotone decreasing while the
relations for the type-I model are monotone decreas-
ing.

2.4 FitzHugh-Nagumo Model

FitzHugh-Nagumo (FN) model is derived by reducing
the parameter the HH model. FitzHugh [14], [15] and,
independently, Nagumo, Arimoto, and Yoshizawa [16]
derived the following two equations to qualitatively de-
scribe the events occurring in an neuron:

dV

dt
= V − V 3

3
− W + Iext(t) (10)

dW

dt
= φ(V + a − bW ) (11)

The variables and parameters are listed in Table 5. The
resting potential is −1.2, so the reversal potential Vrev

and threshold value are scaled down: Vrev = 0 for an
excitatory input and threshold value is −0.9.

Figure 5 shows the results of relations of control in-

(a)

(b)

Fig. 4 Relation of input intensity to firing time by interference
in the case of the Morris-Lecar type-II model. (a) Relation of
input intensity to firing time by interference between two inputs.
The base input intensity 40.0mS/cm2. (b) Relation of relative
input time to firing time by interference between two inputs.

Table 5 FitzHugh-Nagumo variables used in the simulations.

Iext(t) : external current
V : membrane potential

resting potential V0 = −1.2
W : accommodation and recovery variable

t : time
a : positive constant [ 0.7 ]
b : positive constant [ 0.8 ]
φ : temperature-scaling factor [ 0.21 ]

put intensity to firing time. All relations are not mono-
tone decreasing.

2.5 Comparison

In the HH, the ML type-II, and the FN models, the
relation of the input intensity to the firing time is non-
monotone decreasing while that in the IF and the ML
type-I models it is monotone decreasing. The param-
eters, such as the membrane potential, in the HH, IF,
and ML models have meaningful dimension, but the
parameters in the FN model are not. The characteris-
tics of all the models are summarized in Table 6. The
FN model that is simplified from the HH model still
remains the relations of the input intensity to the firing
time that is the same as the relations for the original
HH model despite its qualitativeness. The ML model
can show both the non-monotonic and the monotonic
relation.
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Table 6 Model characteristics.

model
relation of input intensity

to firing time
parameters

HH (Hodgkin-Huxley) non-monotone quantitative
IF (integrate-and-fire) monotone quantitative
ML (Morris-Lecar) type-I monotone quantitative
ML (Morris-Lecar) type-II non-monotone quantitative
FN (FitzHugh-Nagumo) non-monotone qualitative

(a)

(b)

Fig. 5 Relation of input intensity to firing time by interference
in the case of the FitzHugh-Nagumo model. (a) Relation of in-
put intensity to firing time by interference between two inputs.
Intensity of base input is 1.0. (b) Relation of relative input time
to firing time by interference between two inputs.

3. Firing Patterns in Circular and Mutual
Connections

In the previous section, the HH, the ML type-II, and the
FN models belong to the group of a non-monotonous
relation between the input intensity and the firing time
while the IF and the ML type-I models belong to the
group of a monotonous one. The firing patterns are
supposed to be quite different if the region of weak in-
puts is used. In this section, we present a connective
model of V1 and LGN (lateral geniculate nucleus) to
show how different firing patterns depending on model
neurons are.

3.1 Model

There is a circular connections in V1 and LGN: from
LGN to the layer IV, from layer IV to layer II/III, from

Fig. 6 V1 and LGN model.

layer II/III to layer V, from layer V to layer VI, and
from layer VI to the LGN [17], and the neurons of layer
II/III of which characters are the same have weak mu-
tual excitatory connections [18]–[20]. We construct a
V1 and LGN model with the circular and mutual ex-
citatory connections shown in Fig. 6. This model was
designed by our simulation environment [21] and the
kernels of the environment (simulation program) of the
HH, the IF, the ML and the FN models have been pre-
pared.

The weights of all circular connections are simply
set enough to induce a firing of the target neuron; the
weights of circular connections are set the base input
intensity shown in Sect. 2, which we define as a unit
of the weight, in each model. The weights of all mu-
tual excitatory connections are set 0.15 units because
the horizontally evoked EPSP (excitatory postsynap-
tic potential) was too small to elicit spikes [19], [20],
[22]. In this model all action potentials propagate after
the propagative delay, 0.35ms (e.g., synaptic delay is
0.29ms [23] and added the conductive delays).

3.2 Results

First, stimulus is given to five LGN neurons as shown
in Fig. 6 in turn from the bottom (the spikes separated
constantly; interval = 3.0ms). The results in the HH,
the ML type-II, and the FN model neurons are that the
spikes that are scattered at first gradually synchronize
as shown in Figs. 7 (a), (d) and (e), respectively. This
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(a) HH model

(b) IF model

(c) ML type-I model

(d) ML type-II model

(e) FN model

Fig. 7 Comparison firing patterns of five neurons in II/III layer
as shown in Fig. 6. Vertical axis indicate the neurons in II/III
layer. Vertical bars indicate firings. In each simulation, we use
the same model neuron for all V1 and LGN neurons. Though we
use the same connective network as shown in Fig. 6, we change
a model neuron. Used parameters in each model neuron are the
same in Sect. 2 for adjusting the inter spike interval.

is because the spikes from mutual excitatory synapses
retard the distant later spikes from the circular con-
nections and attract the near spikes from the circu-
lar connections. This situation can be understood by
comparing the result with the mutual connection (solid
lines in Fig. 8 (a)) and the result without mutual con-
nection (dashed lines in Fig. 8 (a)). From Fig. 8 (a), a
schematic diagram of synchrony by the retardation and
the entrainment is shown in Fig. 8 (b). The weak EPSP
from the neuron 1 to the neuron 2 in Fig. 8 (b) entrains
the near EPSP from the circular network (for exam-
ple, see the firing time from −3 to 2ms in Fig. 1 (b)).
The weak EPSP from the neuron 2 to the neuron 1 in
Fig. 8 (b) retards the later spike because the weak EPSP
and the later EPSP from the circular network are apart
(for example, see the firing time from −8 to −3ms in
Fig. 1 (b)). In the case of the IF and the ML type-I
model neurons, on the other hand, the results were ex-
tremely different from the results of the HH and the
FN model: the spikes in the case of the IF and the ML
type-I model do not synchronize as shown in Figs. 7 (b)
and (c), respectively.

We show the firing patterns by stimuli described
below in each model neurons. Visual information about
the external world is acquired during a fixation period

(a)

(b)

Fig. 8 (a) Effect of mutual connections in case of HH model
neuron and (b) Schematic diagram of synchrony by retardation
and entrainment of two neurons. Vertical bars indicate firing
time. Solid vertical bars are firings with mutual connections
while dashed vertical ones are firings without mutual connec-
tions. Dashed arrows means propagations of spikes by mutual
connections, and in the point of the arrows a weak EPSP (ex-
citatory postsynaptic potential) affects the other neuron. First,
the weak EPSP propagates from neuron 1 to neuron 2. In this
case, the firing time is advanced because the weak EPSP is near
to the strong EPSP from the circular network. Second, the weak
EPSP propagates from neuron 2 to neuron 1. In this case, the
firing time is retarded because the weak EPSP is far to the strong
EPSP from the circular network.

that lasts from 200 to 300ms and that follows a saccade
at by some tens of milliseconds [24]. Psychophysical
measurements have indicated that information is actu-
ally acquired only during the first roughly 100ms of the
fixation [25]–[29]. We therefore gave five input stimuli
(intensity of the base input) to each LGN neuron at
random times within the first 100ms. Each simulation
lasts for 300ms and is repeated 100 times.

The results are shown in Figs. 9, 10, 11, 12,
and 13 as the normalized joint peristimulus time his-
tograms (JPSTHs) [30]. The cross-correlations of two
layer II/III neurons connected horizontally in the HH
(Fig. 9), the ML type-II (Fig. 12), and the FN model
(Fig. 13) are high value. The PST coincidence his-
togram (running from lower left to upper right in the
right hand) in Figs. 9, 12, and 13 shows that the spikes
gradually elicit coincidence. On the other hand, the
cross-correlations of the neurons in the IF (Fig. 10) and
the ML type-I model (Fig. 11) are low; the spikes in the
IF and the ML type-I model do not synchronize.
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Fig. 9 JPSTH (joint peristimulus time histogram) in case of
the Hodgkin-Huxley model. The bottom and the left of the
JPSTH along horizontal and vertical axis are peristimulus time
histogram (PST) of two neurons. The histogram running from
lower left to upper right is PST coincident histogram. The his-
togram running from upper left to lower right is cross-correlation
histogram. Simulation lasted for 300 ms and was repeated 100
times. Bin width is 1.0 ms. Scale bars of PST, coincidence, and
cross-correlation histograms are 0.25, 0.8, and 0.16, respectively.
Values in a JPSTH matrix are displayed by using gray levels:
the higher the value, the darker the gray. The effective connec-
tivity (value of average PST coincidence histogram) is 0.0742.
Oscillation frequency is about 75 Hz.

Fig. 10 JPSTH in case of the integrate-and-fire model. The
effective connectivity is −0.0684.

Fig. 11 JPSTH in case of the Morris-Lecar type-I model. The
effective connectivity is 0.0015.

4. Discussion

In this paper we show that the firing patterns dra-

Fig. 12 JPSTH in case of the Morris-Lecar type-II model. The
effective connectivity is 0.2393.

Fig. 13 JPSTH in case of the FitzHugh-Nagumo model. The
effective connectivity is 0.0738.

matically change with the dependence on the model
neurons. The model characteristics, non-monotone or
monotone, as shown in Table 6 are one of the best cat-
egory to distinguish accurate firing patterns in a con-
nective network model.

The oscillations of the model described in this ar-
ticle are evoked in the circular connections of area V1
and the LGN. No matter what oscillatory mechanism
is, the oscillatory synchronous firing by the interfer-
ence between spikes in mutual connections can be per-
formed. Examples of another oscillatory mechanisms
are the oscillation in a single intrinsically oscillating
neurons or in excitatory neuron with recurrent inhibi-
tion or in mutual inhibition [31] or in the another loops.
Gastelo-Branco et al. [32] made simultaneous multi-unit
recordings from visual areas 17 (V1) and 18 as well
as the LGN in order to examine the interactions be-
tween subcortical and cortical synchronization mecha-
nisms. Strong correlations of oscillatory responses were
observed. In the static stimuli the oscillation frequen-
cies of both cortical neurons and LGN neurons were
60–120Hz, in agreement with our simulation results,
while in the dynamic stimuli the oscillation frequencies
of cortical neurons and LGN neurons were different:
the frequencies of cortical neurons were 20–60Hz while
the frequencies of LGN neurons were 60–120Hz. In the
latter one, we suppose that multiple loops affect the
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oscillations.
It is a future work to examine firing time by inter-

ference between spikes in more neural connective mod-
els. We would like to further examine the firing time in
neural circuits in order to clarify the coding mechanism
which utilizes the spike timing in the nervous system.
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